Citation: WANG Zhe, MAO Shanjun, LI Haoran, WANG Yong. How to Synthesize Vitamin E[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 598-617. doi: 10.3866/PKU.WHXB201711231 shu

How to Synthesize Vitamin E

  • Corresponding author: WANG Yong, chemwy@zju.edu.cn
  • Received Date: 11 October 2017
    Revised Date: 16 November 2017
    Accepted Date: 17 November 2017
    Available Online: 23 June 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21622308, 91534114, 21376208)the National Natural Science Foundation of China 21376208the National Natural Science Foundation of China 21622308the National Natural Science Foundation of China 91534114

  • Vitamin E compounds are biologically active and are frequently used as antioxidants. The demand for Vitamin E compounds has increased significantly in recent years, and at present, more than 80% of the market demand for Vitamin E is fulfilled by its synthetic counterparts. Therefore, it is imperative to increase the production of Vitamin E. Vitamin E compounds contain tocopherol and tocotrienol derivatives, and α-tocopherol, which dominates the sound, is the most biologically active. This review covers the methods of preparation of α-tocopherol, focusing on the synthesis routes, chemical reactions, and corresponding catalysts. The synthesis of Vitamin E, including preparation of 2, 3, 5-trimethylhydroquinone (TMHQ), preparation of isophytol, and condensation of TMHQ and isophytol are discussed in detail. The disadvantages and issues related to the preparation methods are also included. In general, the preparation of TMHQ comprises three steps: (1) methylation of m-cresol to 2, 3, 6-trimethylphenol, (2) oxidation of 2, 3, 6-trimethylphenol to 2, 3, 5-trimethylbenzoquione (TMBQ), and (3) hydrogenation of TMBQ to TMHQ. Recently, a novel and attractive method using isophorone, which can be produced by self-condensation of acetone, as a source for synthesizing TMHQ has been developed. Among these procedures, it is important to attain high selectivity in the oxidative reactions, including oxidation of 2, 3, 6-trimethylphenol and isophorone (α-isophorone or β-isophorone), and to replace H2O2, a common oxidant, by oxygen or air. One of the methods of preparation of isophytol using citral as a source has been abandoned because of shortage of oil of litsea cubeba, which is a natural source of citral. Linalool, produced from 6-methyl-5-hepten-2-one, is a key intermediate in the main process of preparation of isophytol. Both BASF SE and Roche have developed effective methods for the preparation of 6-methyl-5-hepten-2-one, respectively. Semi-hydrogenation of alkynols plays a key role in the whole process. The selectivity, especially at high conversion is directly related to the profit; therefore, it is of great importance for industries. The condensation of TMHQ and isophytol is essentially a Friedel-Crafts alkylation reaction catalyzed by acids. Similar reactions include methylation of m-cresol. Bronsted acids are usually effective for these reactions; however, it is difficult to recover these catalysts from the homogeneous systems. Therefore solid acid has a great potential in this area and it is also a promising topic to reduce the loss of acid sites when using acid-immobilized catalysts. The supply of various sources of the reactants and the local policy need to be considered while choosing an appropriate method for the preparation of Vitamin E.
  • 加载中
    1. [1]

      Traber, M. G. Annu. Rev. Nutr. 2007, 27, 347. doi: 10.1146/annurev.nutr.27.061406.093819  doi: 10.1146/annurev.nutr.27.061406.093819

    2. [2]

      Sun, J. M.; Lu, H. F.; Nan, J. L. Tianjin Chem. Ind. 2002, 5, 26.  doi: 10.3969/j.issn.1008-1267.2002.05.012

    3. [3]

      Eckstein, S.; Hintermeier, P. H.; Olarte, M. V.; Liu, Y.; Baráth, E.; Lercher, J. A. J. Catal. 2017, 352, 329. doi: 10.1016/j.jcat.2017.06.002  doi: 10.1016/j.jcat.2017.06.002

    4. [4]

      Leach B. L. Process for direct methylation of phenol in liquid phase. US 3994982A, 1975.

    5. [5]

      Leach B. E. Process for the synthesis of 2, 6-xylenol and 2, 3, 6-trimethylphenol. US 4283574A, 1980.

    6. [6]

      Velu, S.; Sivasanker, S. Res. Chem. Intermediat 1998, 24, 657. doi: 10.1163/156856798x00555  doi: 10.1163/156856798x00555

    7. [7]

      Grabowska, H.; Wrzyszcz, J.; Syper, L. Catal. Lett. 1999, 57, 135. doi: 10.1023/a:1019083112771  doi: 10.1023/a:1019083112771

    8. [8]

      Xiao, G. M.; Li, Z. S; Jiang, F.; Niu, L.; Xiong, Z. Catalyst for synthesizing 2, 3, 6-trimethylphenol and preparation method thereof. CN 102974354A, 2013.

    9. [9]

      Niu, L.; Li, Z. S.; Jiang, F.; Zhou, M. H.; Wang, Z. H.; Xiao, G. M. React. Kinet. Mech. Cat. 2014, 112, 199. doi: 10.1007/s11144-014-0697-z  doi: 10.1007/s11144-014-0697-z

    10. [10]

      Gandhe, A. R.; Fernandes, J. B. Catal. Commun. 2004, 5, 89. doi: 10.1016/j.catcom.2003.11.017  doi: 10.1016/j.catcom.2003.11.017

    11. [11]

      Gandhe, A. R.; Naik, S. P.; Kakodkar, S. B.; Fernandes, J. B. Catal. Commun. 2006, 7, 285. doi: 10.1016/j.catcom.2005.09.013  doi: 10.1016/j.catcom.2005.09.013

    12. [12]

      Santacesaria, E.; Grasso, D.; Gelosa, D.; Carrá, S. Appl. Catal. 1990, 64, 83. doi: 10.1016/S0166-9834(00)81555-9  doi: 10.1016/S0166-9834(00)81555-9

    13. [13]

      Sreekumar, K.; Sugunan, S. Appl. Catal. A 2002, 230, 245. doi: 10.1016/S0926-860X(02)00006-6  doi: 10.1016/S0926-860X(02)00006-6

    14. [14]

      Bezouhanova, C.; Al-Zihari, M. A. Appl. Catal. A 1992, 83, 45. doi: 10.1016/0926-860X(92)80024-7  doi: 10.1016/0926-860X(92)80024-7

    15. [15]

      Qian, D.; He, H. Q.; Wang, K. Y. Chem. Reagents(Beijing, China) 2002, 4, 231.  doi: 10.3969/j.issn.0258-3283.2002.04.016

    16. [16]

      Bodnar, Z.; Mallat, T.; Baiker, A. J. Mol. Catal. A-Chem. 1996, 110, 55. doi: 10.1016/1381-1169(96)00042-8  doi: 10.1016/1381-1169(96)00042-8

    17. [17]

      Li, X.; Wang, X. Y.; Shu, W. G.; Qian, D. Hunan Chem. Ind. 1998, 5, 24.  doi: 10.19342/j.cnki.issn.1009-9212.1998.05.010

    18. [18]

      Chu, Z. H.; Zang, H. C. Guangzhou Chem. Ind. 2011, 9, 104.  doi: 10.3969/j.issn.1001-9677.2011.09.037

    19. [19]

      Takehira, K.; Shimizu, M.; Watanabe, Y.; Orita, H.; Hayakawa, T. J. Chem. Soc., Chem. Commun. 1989, 1705. doi: 10.1039/C39890001705  doi: 10.1039/C39890001705

    20. [20]

      Takehira, K.; Shimizu, M.; Watanabe, Y.; Orita, H.; Hayakawa, T. Tetrahedron Lett.1989, 30, 6691. doi: 10.1016/S0040-4039(00)70652-6  doi: 10.1016/S0040-4039(00)70652-6

    21. [21]

      Shimizu, M.; Watanabe, Y.; Orita, H.; Hayakawa, T.; Takehira, K. B. Chem. Soc. Jpn. 1992, 65, 1522. doi: 10.1246/bcsj.65.1522  doi: 10.1246/bcsj.65.1522

    22. [22]

      Sun, H. J.; Harms, K.; Sundermeyer, J. J. Am. Chem. Soc. 2004, 126, 9550. doi: 10.1021/ja0391964  doi: 10.1021/ja0391964

    23. [23]

      Wang, X. P.; Yang, R. Y.; Li, W.; Li, X. A.; Yan, J.; Liu, W. T.; Zhang, H. H. Ind. Catal. 2013, 8, 73.  doi: 10.3969/j.issn.1008-1143.2013.08.016

    24. [24]

      Guan, W. H.; Wang, C. M.; Yun, X.; Hu, X. B.; Wang, Y.; Li, H. R. Catal. Commun. 2008, 9, 1979. doi: 10.1016/j.catcom.2008.03.028  doi: 10.1016/j.catcom.2008.03.028

    25. [25]

      Wang, C.; Guan, W.; Xie, P.; Yun, X.; Li, H.; Hu, X.; Wang, Y. Catal. Commun. 2009, 10, 725. doi: 10.1016/j.catcom.2008.11.027  doi: 10.1016/j.catcom.2008.11.027

    26. [26]

      Kholdeeva, O. A.; Golovin, A. V.; Kozhevnikov, I. V. React. Kinet. Catal. L. 1992, 46, 107. doi: 10.1007/bf02096685  doi: 10.1007/bf02096685

    27. [27]

      Kholdeeva, O. A.; Golovin, A. V.; Maksimovskaya, R. I.; Kozhevnikov, I. V. J. Mol. Catal. 1992, 75, 235. doi: 10.1016/0304-5102(92)80128-4  doi: 10.1016/0304-5102(92)80128-4

    28. [28]

      Qian, D.; Zhang, M.; Wang, K. Y. Chin. J. Synth. Chem. 1998, 2, 2.  doi: 10.15952/j.cnki.cjsc.1998.02.001

    29. [29]

      Palacio, M.; Villabrille, P. I.; Romanelli, G. P.; Vázquez, P. G.; Cáceres, C. V. Appl. Catal. A 2012, 417, 273. doi: 10.1016/j.apcata.2011.12.049  doi: 10.1016/j.apcata.2011.12.049

    30. [30]

      Lin, T. H.; Chen, C. C.; Jang, L. Y.; Lee, J. F.; Cheng, S. Micropor. Mesopor. Mater.2014, 198, 194. doi: 10.1016/j.micromeso.2014.07.027  doi: 10.1016/j.micromeso.2014.07.027

    31. [31]

      Trukhan, N. N.; Romannikov, V. N.; Paukshtis, E. A.; Shmakov, A. N.; Kholdeeva, O. A. J. Catal. 2001, 202, 110. doi: 10.1006/jcat.2001.3264  doi: 10.1006/jcat.2001.3264

    32. [32]

      Zhou, J.; Hua, Z. L.; Cui, X. Z.; Ye, Z. Q.; Cui, F. M.; Shi, J. L. Chem. Commun. 2010, 46, 4994. doi: 10.1039/C0CC00499E  doi: 10.1039/C0CC00499E

    33. [33]

      Kholdeeva, O. A.; Ivanchikova, I. D.; Guidotti, M.; Ravasio, N.; Sgobba, M.; Barmatova, M. V. Catal. Today 2009, 141, 330. doi: 10.1016/j.cattod.2008.06.005  doi: 10.1016/j.cattod.2008.06.005

    34. [34]

      Wu, M. Z.; Li, Y.; Huang, X. Z.; Liu, W.; Yi, Z. Z. Appl. Chem. Ind.(Xi'an, China)2014, 3, 456.  doi: 10.16581/j.cnki.issn1671-3206.2014.03.004

    35. [35]

      Li, Y.; Liu, W.; Wu, M. Z.; Yi, Z. Z.; Zhang, J. C. Mendeleev. Comm. 2010, 20, 218. doi: 10.1016/j.mencom.2010.06.012  doi: 10.1016/j.mencom.2010.06.012

    36. [36]

      Liu, Y. C.; Hsu, J.; Fu, Y. P.; Tsai, K. Int. J. Hydrog. Energy 2016, 41, 15696. doi: 10.1016/j.ijhydene.2016.04.127  doi: 10.1016/j.ijhydene.2016.04.127

    37. [37]

      Zhang, T. Y.; Wang, M. Y.; Li, B.; Liu, Q. Chem. Ind. Eng. Prog.(Beijing, China) 2016, 2, 513.  doi: 10.16085/j.issn.1000-6613.2016.02.025

    38. [38]

      Zhu, Z. Q.; Yuan, Z. F.; Xu, Q. F. Preparation method of 2, 3, 5-trimethylhydroquinone. CN 102241577A, 2011.

    39. [39]

      Zhang, T. Y.; Yin, G.; Li, B.; Wang, X.; Jiang, S.; Yuan, Z. F. Res. Chem. Intermediat 2015, 41, 663. doi: 10.1007/s11164-013-1219-8  doi: 10.1007/s11164-013-1219-8

    40. [40]

      Qian, D.; Wang, K. Y.; Yang, L. Y.; Zhang, M. K. J. Cent. South Univ.(Sci. Technol.) 2000, 1, 41.

    41. [41]

      Qian, D.; Wang, K. Y.; Yang, L. Y.; Zhang, M. K. J. Cent. South Univ.(Sci. Technol.)1998, 5, 97.

    42. [42]

      Zhao, X. M.; Jin, Y.; Zhang, F. M.; Zhong, Y. J.; Zhu, W. D. Chem. Eng. J. 2014, 239, 33. doi: 10.1016/j.cej.2013.11.003  doi: 10.1016/j.cej.2013.11.003

    43. [43]

      Zhang, T. Y.; Yin, G.; Li, B.; Deng, Y. F.; Yuan, Z. F. Appl. Chem. Ind.(Xi'an, China) 2013, 8, 1363.  doi: 10.16581/j.cnki.issn1671-3206.2013.08.034

    44. [44]

      Mukhopadhyay, S.; Chandnani, K. H.; Chandalia, S. B. Org. Process. Res. Dev. 2000, 4, 254. doi: 10.1021/op990074z  doi: 10.1021/op990074z

    45. [45]

      Su, D. F.; Wei, Z. Z.; Mao, S. J.; Wang, J.; Li, Y.; Li, H. R.; Chen, Z. R.; Wang, Y. Catal. Sci. Technol. 2016, 6, 4503. doi: 10.1039/C5CY02171E  doi: 10.1039/C5CY02171E

    46. [46]

      Qiao, J. C.; Chen, Q.; Cai, D. W. Process for synthesizing 2, 3, 6-trimethylphenol by 4-tert-butylphenol. CN 102976902A, 2013.

    47. [47]

      Zhao, J. C.; Han, Q. Y.; Liu, J. F.; Liu, L.; Hu, L. L.; Liu, Y. H. Method for extraction of 2, 4, 6-trimethylphenol from 2, 6-dimethylphenol waste. CN 104045522A, 2014.

    48. [48]

      Teijin LTD Preparation of 2, 4, 6-trimethylphenol. GB 1451091A, 1973.

    49. [49]

      Bonrath, W.; Schuetz, J.; Cavani, F. Manufacture of 2, 4, 6-trimethylphenol. WO 2015197586A1, 2015.

    50. [50]

      Ichikawa, Y.; Yamanaka, Y.; Tsuruta, H. Novel process for preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadiene-1-one. US 3966818A, 1973.

    51. [51]

      Toyoda, Y.; Ikeda, Y.; Hase, T.; Kitano, N. Preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 5841835A, 1981.

    52. [52]

      Tomita, T.; Kino, M.; Takada, T. Preparation of 4-hydroxy-2, 4, 6-trimethylcyclohexa-2, 5-dien-1-one. JPS 58116435A, 1981.

    53. [53]

      Tomita, T.; Kino, M.; Takada, T. Preparation of hydroxy-tri:methyl-cyclo-hexa-dienone—by reacting tri:methyl-phenol with hypohalous acid. JPS 59163337A, 1983.

    54. [54]

      Yoshida, D. Production of high-purity 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 62238230A, 1986.

    55. [55]

      Gogou, T. Preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 5953438A, 1982.

    56. [56]

      Costantini, M.; Igersheim, F.; Krumenacker, L. Process for the preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadienone. US 4565895A, 1984.

    57. [57]

      Costantini, M.; Igersheim, F.; Krumenacker, L. 4-Hydroxy 2, 4, 6-tri:methyl cyclohexadienone preparation—by chlorination and hydrolysis of 2, 4, 6-tri:methyl phenol. US 4612401A, 1986.

    58. [58]

      Teijin LTD Preparation of trimethyl hydroquinone. GB 1439494A, 1973.

    59. [59]

      Qiao, J. C.; Chen, Q.; Cai, D. W. Process for synthesizing 2, 3, 6-trimethylphenol by phenol. CN 102976903A, 2013.

    60. [60]

      Arnold, L.; Pasedach, H.; Pommer, H. 2, 3, 6-Trimethylphenol production—by reacting diethyl ketone in presence of base with e.g. crotonaldehyde. DE 1668874B1, 1971.

    61. [61]

      Tavs, P.; Laas, H.; Schauer, H.; Arnold, L. Increasing the yield of 2.5.6-trimethylcyclohex-2-en-1-one. US 4820874A, 1989.

    62. [62]

      Rittinger, S.; Rieber, N.; Arnold, L.; Hoercher, U. Production of 2, 3, 6-tri:methylphenol—by reacting di:ethyl ketone with 1-amino-vinyl methyl ketone at 50-200 deg.C. DE 4414877A1, 1995.

    63. [63]

      Nissei IND CO LTD Trimethylbenzoquinone production in aq. soln.—from 3, 6-dinitrotrimethyl benzene sulphonate using ferric salt as oxidising agent. JP 75028426B, 1975.

    64. [64]

      Bao, J.; Liu, G. F.; Gao, R.; Zhang, Y. 2016, 4, 187.  doi: 10.3969/j.issn.1008-4800.2016.04.121

    65. [65]

      Chen, H.; Wu, Y.; Xu, G. M. Adv. Fine Petrochem. 2002, 4, 25.  doi: 10.3969/j.issn.1009-8348.2002.04.008

    66. [66]

      Zhao, F.; Yang, B. Y.; Gu, J. J.; Guan, P. M. Ind. Catal. 2012, 6, 62.  doi: 10.3969/j.issn.1008-1143.2012.06.014

    67. [67]

      Zhang, T. Y.; Liu, X. S.; Li, B.; Wang, M. Y.; Wang, Z. C.; Hai, L. Chem. Bull.(Beijing, China) 2017, 6, 573.  doi: 10.14159/j.cnki.0441-3776.2017.06.010

    68. [68]

      Zhang, T. Y.; Duan, Y. J.; Li, B.; Wang, X.; Du, J.; Yin, G.; Yuan, Z. F. Chem. Reagents(Beijing, China) 2013, 1, 3.  doi: 10.13822/j.cnki.hxsj.2013.01.016

    69. [69]

      Dawson, B.; Pugach, J. Method of making ketoisophorone via oxidation of isophorone with tert-butyl hydroperoxide. WO 9615094A1, 1996.

    70. [70]

      Noesberger, P.; Vieth, A. Process for manufacture of beta-isophorone. US 5276197A, 1994.

    71. [71]

      Krill, S.; Giray, G.; Huthmacher, K.; Huebner, F.; Tanner, H. Method of producing 3, 5, 5-trimethylcyclohexa-3-ene-1-one(beta -isophorone) by the isomerization of 3, 5, 5-trimethylcyclohexa-2-ene-1-(alpha-isophorone). US 6005147A, 1999.

    72. [72]

      Takahashi, I.; Shibata, H. Oxidation catalyst and oxidation process using the same. US 6462239B2, 2002.

    73. [73]

      Ina, T.; Miura, H.; Takahashi, I. Process for the production of ketoisophorone derivatives and equipment therefor. US 6410797B1, 2002.

    74. [74]

      Murphy, E. F.; Baiker, A. J. Mol. Catal. A-Chem. 2002, 179, 233. doi: 10.1016/S1381-1169(01)00342-9  doi: 10.1016/S1381-1169(01)00342-9

    75. [75]

      Bellut, H. Method of producing 2, 6, 6-trimethyl-2-cyclohexane-1, 4-dione. US 4970347A, 1990.

    76. [76]

      Hu, X. B.; Mao, J. Y.; Sun, Y.; Chen, H.; Li, H. R. Catal. Commun. 2009, 10, 1908. doi: 10.1016/j.catcom.2009.06.024  doi: 10.1016/j.catcom.2009.06.024

    77. [77]

      Chen, Z. R.; Fang, T. T.; Yuan, S. F.; Yin, H. Int. J. Chem. Kinet. 2016, 48, 295. doi: 10.1002/kin.20987  doi: 10.1002/kin.20987

    78. [78]

      Beyrhouty, M.; Sorokin, A. B.; Daniele, S.; Hubert-Pfalzgraf, L. G. New J. Chem. 2005, 29, 1245. doi: 10.1039/B507211E  doi: 10.1039/B507211E

    79. [79]

      Sorokin, A. B.; Quignard, F.; Valentin, R.; Mangematin, S. Appl. Catal. A 2006, 309, 162. doi: 10.1016/j.apcata.2006.03.060  doi: 10.1016/j.apcata.2006.03.060

    80. [80]

      Burns, E.; Huang, T.; Weare, W. W.; Bartolotti, L.; Wang, X. Y.; Yao, J.; Li, H. R.; Franzen, S. J. Mol. Catal. A-Chem. 2015, 410, 110. doi: https://doi.org/10.1016/j.molcata.2015.09.015  doi: 10.1016/j.molcata.2015.09.015

    81. [81]

      Thatte, C. S.; Rathnam, M. V.; Pise, A. C. J. Chem. Sci. 2014, 126, 727. doi: 10.1007/s12039-014-0601-4  doi: 10.1007/s12039-014-0601-4

    82. [82]

      Mao, J. Y.; Li, N.; Li, H. R.; Hu, X. B. J. Mol. Catal. A-Chem. 2006, 258, 178. doi: 10.1016/j.molcata.2006.05.051  doi: 10.1016/j.molcata.2006.05.051

    83. [83]

      Zhang, P. F.; Li, H. R.; Wang, Y. Chem. Commun. 2014, 50, 6312. doi: 10.1039/c4cc02676d  doi: 10.1039/c4cc02676d

    84. [84]

      Kishore, D.; Rodrigues, A. E. Catal. Commun. 2007, 8, 1156. doi: 10.1016/j.catcom.2006.10.037  doi: 10.1016/j.catcom.2006.10.037

    85. [85]

      Kishore, D.; Rodrigues, A. E. Appl. Catal. A 2008, 345, 104. doi: 10.1016/j.apcata.2008.04.029  doi: 10.1016/j.apcata.2008.04.029

    86. [86]

      Wang, C. M.; Wang, G. L.; Mao, J. Y.; Yao, Z.; Li, H. R. Catal. Commun. 2010, 11, 758. doi: 10.1016/j.catcom.2010.02.010  doi: 10.1016/j.catcom.2010.02.010

    87. [87]

      Chen, K. X.; Sun, Y.; Wang, C. M.; Yao, J.; Chen, Z. R.; Li, H. R. Phys. Chem. Chem. Phys. 2012, 14, 12141. doi: 10.1039/C2CP41617D  doi: 10.1039/C2CP41617D

    88. [88]

      Zhong, W. Z.; Mao, L. Q.; Xu, Q.; Fu, Z. H.; Zou, G. Q.; Li, Y. Q.; Yin, D. L.; Luo, H.; Kirk, S. R. Appl. Catal. A 2014, 486, 193. doi: 10.1016/j.apcata.2014.08.005  doi: 10.1016/j.apcata.2014.08.005

    89. [89]

      Murphy, E. F.; Mallat, T.; Baiker, A.; Schneider, M. Appl. Catal. A 2000, 197, 295. doi: 10.1016/S0926-860X(99)00491-3  doi: 10.1016/S0926-860X(99)00491-3

    90. [90]

      Crier, S.; Huthmacher, K. Method for preparation of 2, 3, 5-trimethyl hydrochinone di-ester. CN 1265390A, 2000.

    91. [91]

      Weigel, H.; Krill, S.; Hasselbach, H.; Huthmacher, K.; Wegel, H.; Kelier, S.; Haserbach, H. Process for preparing esterified chroman compounds. US 6329535B1, 2001.

    92. [92]

      Bonrath, W.; Schneider, M.; Werner, B.; Michael, S. Manufacture of trimethylhydroquinone diacylates. CN 1604888A, 2005.

    93. [93]

      Weigel, H.; Krill, S.; Hasselbach, H.; Huthmacher, K.; Wegel, H.; Kelier, S.; Haserbach, H. Preparation process of exterified chroman compound. CN 1308077A, 2001.

    94. [94]

      Wildermann, A.; Foricher, Y.; Netscher, T.; Bonrath, W. Pure Appl. Chem. 2007, 79, 1839. doi: 10.1351/pac200779111839  doi: 10.1351/pac200779111839

    95. [95]

      Zeng, Q. Y.; Song, W. J.; Zhang, Q.; Pan, H.; Gao, J. Y.; Ni, C. Y. Method for synthesizing 2, 3, 5-trimethylhydroquinone diester. CN 102180793A, 2011.

    96. [96]

      Schneider, M.; Zimmermann, K.; Aquino, F.; Bonrath, W. Appl. Catal. A 2001, 220, 51. doi: 10.1016/S0926-860X(01)00704-9  doi: 10.1016/S0926-860X(01)00704-9

    97. [97]

      Rác, B.; Molnár, Á.; Forgo, P.; Mohai, M.; Bertóti, I. J. Mol. Catal. A-Chem. 2006, 244, 46. doi: 10.1016/j.molcata.2005.08.043  doi: 10.1016/j.molcata.2005.08.043

    98. [98]

      Hinze, R.; Laufer, M. C.; Hölderich, W. F.; Bonrath, W.; Netscher, T. Catal. Today 2009, 140, 105. doi: 10.1016/j.cattod.2008.07.008  doi: 10.1016/j.cattod.2008.07.008

    99. [99]

      Aec Chim Organ Biolog. Improvements in and relating to process of preparing isophytol. GB 1087837A, 1967.

    100. [100]

      Kuśtrowski, P.; Sułkowska, D.; Chmielarz, L.; Dziembaj, R. Appl. Catal. A 2006, 302, 317. doi: 10.1016/j.apcata.2006.02.003  doi: 10.1016/j.apcata.2006.02.003

    101. [101]

      Abelló, S.; Vijaya-Shankar, D.; Pérez-Ramírez, J. Appl. Catal. A 2008, 342, 119. doi: 10.1016/j.apcata.2008.03.010  doi: 10.1016/j.apcata.2008.03.010

    102. [102]

      Díez, V. K.; Di Cosimo, J. I.; Apesteguía, C. R. Appl. Catal. A 2008, 345, 143. doi: 10.1016/j.apcata.2008.04.035  doi: 10.1016/j.apcata.2008.04.035

    103. [103]

      Abelló, S.; Medina, F.; Tichit, D.; Pérez-Ramírez, J.; Rodríguez, X.; Sueiras, J. E.; Salagre, P.; Cesteros, Y. Appl. Catal. A 2005, 281, 191. doi: 10.1016/j.apcata.2004.11.037  doi: 10.1016/j.apcata.2004.11.037

    104. [104]

      Díez, V. K.; Apesteguía, C. R.; Di Cosimo, J. I. J. Catal. 2006, 240, 235. doi: 10.1016/j.jcat.2006.04.003  doi: 10.1016/j.jcat.2006.04.003

    105. [105]

      Hoelderich W.; Ritzerfeld, V. Preparing pseudoionone by aldol condensation of citral and acetone using heterogeneous catalyst, comprises utilizing supported heterogeneous catalysts based on rare earth metals applied on e.g. zirconium dioxide carrier as carrier materials. DE 102012012785A1, 2013.

    106. [106]

      Wang, Z.; Lu, G. Z.; Guo, Y.; Guo, Y. L.; Gong, X. Q. ACS Sustain. Chem. Eng. 2016, 4, 1591. doi: 10.1021/acssuschemeng.5b01533  doi: 10.1021/acssuschemeng.5b01533

    107. [107]

      Raju, V.; Radhakrishnan, R.; Jaenicke, S.; Chuah, G. K. Catal. Today 2011, 164, 139. doi: 10.1016/j.cattod.2010.10.043  doi: 10.1016/j.cattod.2010.10.043

    108. [108]

      Horst, P.; Herbert, M.; Hermann, O. Preparing alkenones 2-methylheptene-1-on-6 from. DE 1268135B, 1968.

    109. [109]

      Babler, J. H. Process for preparing tertiary alkynols. US 5349071A, 1994.

    110. [110]

      Vorobyeva, E.; Chen, Z.; Mitchell, S.; Leary, R. K.; Midgley, P.; Thomas, J. M.; Hauert, R.; Fako, E.; Lopez, N.; Perez-Ramirez, J. J. Mater. Chem. A 2017, 5, 16393. doi: 10.1039/C7TA04607C  doi: 10.1039/C7TA04607C

    111. [111]

      Crespo-Quesada, M.; Yarulin, A.; Jin, M.; Xia, Y.; Kiwi-Minsker, L. J. Am. Chem. Soc. 2011, 133, 12787. doi: 10.1021/ja204557m  doi: 10.1021/ja204557m

    112. [112]

      Yarulin, A.; Yuranov, I.; Cárdenas-Lizana, F.; Abdulkin, P.; Kiwi-Minsker, L. J. Phys. Chem. C 2013, 117, 13424. doi: 10.1021/jp402258s  doi: 10.1021/jp402258s

    113. [113]

      Semagina, N.; Renken, A.; Kiwi-Minsker, L. J. Phys. Chem. C 2007, 111, 13933. doi: 10.1021/jp073944k  doi: 10.1021/jp073944k

    114. [114]

      Tripathi, B.; Paniwnyk, L.; Cherkasov, N.; Ibhadon, A. O.; Lana-Villarreal, T.; Gómez, R. Ultrason. Sonochem. 2015, 26, 445. doi: 10.1016/j.ultsonch.2015.03.006  doi: 10.1016/j.ultsonch.2015.03.006

    115. [115]

      Tschan, R.; Schubert, M. M.; Baiker, A.; Bonrath, W.; Lansink-Rotgerink, H. Catal. Lett. 2001, 75, 31. doi: 10.1023/a:1016727904935  doi: 10.1023/a:1016727904935

    116. [116]

      Tschan, R.; Wandeler, R.; Schneider, M. S.; Burgener, M.; Schubert, M. M.; Baiker, A. Appl. Catal. A 2002, 223, 173. doi: 10.1016/S0926-860X(01)00755-4  doi: 10.1016/S0926-860X(01)00755-4

    117. [117]

      Studt, F.; Abild-Pedersen, F.; Bligaard, T.; S∅rensen, R. Z.; Christensen, C. H.; N∅rskov, J. K. Science 2008, 320, 1320. doi: 10.1126/science.1156660  doi: 10.1126/science.1156660

    118. [118]

      Yarulin, A.; Yuranov, I.; Cárdenas-Lizana, F.; Alexander, D. T. L.; Kiwi-Minsker, L. Appl. Catal. A 2014, 478, 186. doi: 10.1016/j.apcata.2014.04.003  doi: 10.1016/j.apcata.2014.04.003

    119. [119]

      SNAM SPA(SNAM-C). Selective hydrogenation of alkynols to alkenols—in aqs medium using palladium catalyst and soluble zinc cpd. NL 136588B, 1972.

    120. [120]

      Okhlopkova, L. B.; Matus, E. V.; Prosvirin, I. P.; Kerzhentsev, M. A.; Ismagilov, Z. R. J. Nanopart. Res. 2015, 17, 475. doi: 10.1007/s11051-015-3289-6  doi: 10.1007/s11051-015-3289-6

    121. [121]

      Deng, D. S.; Yang, Y.; Gong, Y. T.; Li, Y.; Xu, X.; Wang, Y. Green Chem. 2013, 15, 2525. doi: 10.1039/c3gc40779a  doi: 10.1039/c3gc40779a

    122. [122]

      Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H. R.; Chen, Z. R.; Wang, Y. J. Catal. 2017, 350, 13. doi: 10.1016/j.jcat.2017.01.021  doi: 10.1016/j.jcat.2017.01.021

    123. [123]

      Bonrath, W.; Mueller, T.; Kiwi-Minsker, L.; Renken, A.; Iouranov, I.; Kiwi, M. Hydrogenation process. CN 102741206A, 2012.

    124. [124]

      Bonrath, W.; Kiwi-Minsker, L.; Iouranov, I.; Kiwi, M. New catalytic system. CN 103906569A, 2014.

    125. [125]

      Bonrath, W.; Buss, A. Metal powderdous catalyst comprising a Fe-alloy. CN 104136114A, 2014.

    126. [126]

      Grjaznov, V.; Keravanov, A.; Belosljudo, N.; Ermolaev, A.; Maganjuk, A.; Saryceva, I. Process for the preparation of ethylene alcohols having 4 to 10 carbon atoms. DE 3114240A1, 1982.

    127. [127]

      Kido, Y.; Kumagai, N.; Iwasaki, H.; Onishi, T.; Ueyama, F.; Kamiyama, F.; Kajiyashiki, T.; Kito, Y.; Iwagasaki, S. Process for producing 6-methyl-3-hepten-2-one and 6-methyl-2-heptanone analogues, and process for producing phyton or isophytol. US 5955636A, 1999.

    128. [128]

      Wilson, S. R.; Price, M. F. J. Org. Chem. 1984, 49, 722. doi: 10.1021/jo00178a036  doi: 10.1021/jo00178a036

    129. [129]

      Constant, S.; Tortoioli, S.; Müller, J.; Lacour, J. Angew. Chem. Int. Ed. 2007, 46, 2082. doi: 10.1002/anie.200604573  doi: 10.1002/anie.200604573

    130. [130]

      Linder, D.; Buron, F.; Constant, S.; Lacour, J. Eur. J. Org. Chem. 2008, 5778. doi: 10.1002/ejoc.200800854  doi: 10.1002/ejoc.200800854

    131. [131]

      Linder, D.; Austeri, M.; Lacour, J. Org. Biomol. Chem. 2009, 7, 4057. doi: 10.1039/B910475E  doi: 10.1039/B910475E

    132. [132]

      Bizet, V.; Lefebvre, V.; Baudoux, J.; Lasne, M.-C.; Boulangé, A.; Leleu, S.; Franck, X.; Rouden, J. Eur. J. Org. Chem. 2011, 4170. doi: 10.1002/ejoc.201100120  doi: 10.1002/ejoc.201100120

    133. [133]

      De Castro, K. A.; Byun, E. Y.; Rhee, H. B. Kor. Chem. Soc. 2009, 30, 2155. doi: 10.5012/bkcs.2009.30.9.2155  doi: 10.5012/bkcs.2009.30.9.2155

    134. [134]

      Oost, C.; Stroezel, M.; Etzrodt, H.; Weller, D.; Rheude, U.; Kaibel, G.; Krug, T.; Spiske, L.; Jaedicke, H.; Dietmar, W.; et al. Preparation of higher unsaturated ketone. CN 1271716A, 2000.

    135. [135]

      Oost, C.; Stroezel, M.; Etzrodt, H.; Weller, D.; Bockstiegel, B.; Reimer, K.; Kaibel, G.; Jaedicke, H.; Dietmar, W.; Aust, C.; et al. Method for continuous preparation of unsaturated ketone. CN 1251832A, 2000.

    136. [136]

      Takasago Perfumery CO(TAKS-C). Soprene trimer preparation—using a catalyst contg. zero-valent nickel and phosphines. JP 77016084B, 1977.

    137. [137]

      Akutagawa, S. Geranyl acetone preparation—by reacting myrcene with acetone imine in presence of alkali metal catalyst, and hydrolysing. JP 53071005A, 1978.

    138. [138]

      Kido, Y.; Kitayama, M.; Yoneda, K.; Iwasaki, H.; Onishi, T.; Kitayama, K. Process for producing 6-methylheptan-2-one. US 5840992A, 1998.

    139. [139]

      Fujita, Y.; Wada, T.; Onishi, T.; Nishida, T.; Omura, S.; Mori, F.; Hosogai, T.; Aihara, F. 6, 10-Di:methyl-6, 9-undeca:diene-2-one production—by ethynylating substd. ketone obtd. from prenyl halide and mesityl oxide, partially hydrogenating and thermally rearranging. JP 55055131A, 1980.

    140. [140]

      Kuraray Co LTD(KURS-C). Preparation of phytone and isophytol. JPS 53105409A, 1978.

    141. [141]

      Onishi, T.; Fujita, Y.; Nishida, T.; Ishiguro, M.; Hosogai, T. Phytone or isophytol production—by heating propargyl alcohol cpd. hydrogenating the resulting ketone and opt. vinylation of resulting phytone. JP 54014906A, 1979.

    142. [142]

      De Jong, A. J.; Van, H. R. Process for the preparation of 6, 10, 14-trimethylpentadecan-2-one. CH 623021A5, 1981.

    143. [143]

      Kuraray Co LTD(KURS-C). 3, 7-dimethyl-1-octanal preparation—by hydroformylation of 2, 6-dimethyl-2-or -3-heptenes. JP 74020170, 1974.

    144. [144]

      Goebbel, H.; Kaibel, G.; Miller, C.; Dobler, W.; Dirnsteiner, T.; Hahn, T.; Breuer, K.; Aquila, W.; Gobbel, H.; Gobbel, G.; et al. Production of tetrahydrogeranylacetone, for use in production of Vitamins E and K, involves selective, liquid-phase hydrogenation of pseudo-ionone using a device which inhibits the transport of catalyst particles. CN 1668564A, 2005.

    145. [145]

      Clamoe, A.; Siegel, W. Method for preparing higher ketone by unsaturated aldehyde. CN 1330062A, 2002.

    146. [146]

      Teles, J.; Hoffmann, W. Preparation of hexahydrofarnesylacetone form 6, 7-dihydrogeraniol, and novel intermadiates therefor. CN 1172795A, 1998.

    147. [147]

      Zhao, Z. D.; Liu, X. Z. Biomass Chem. Eng. 2001, 2, 41.  doi: 10.3969/j.issn.1673-5854.2001.02.011

    148. [148]

      Luo, J. Y.; Wang, H. Z.; Peng, S. J. Chem. Ind. For. Prod. 2000, 3, 47.  doi: 10.3321/j.issn:0253-2417.2000.03.009

    149. [149]

      Liu, X. Z.; Hu, X. E.; Jiang, T. F.; Li, D. M.; Hu, G. X. Chem. Ind. For. Prod. 1997, 3, 25.  doi: 10.3321/j.issn:0253-2417.1997.03.005

    150. [150]

      Sun, M. H.; Qi, X.; Tang, X. Y.; Zhao, W. T. Chem. Ind. Eng.(Tianjin, China) 2016, 1, 51.  doi: 10.13353/j.issn.1004.9533.20131188

    151. [151]

      Renninger, N. S.; Newman, J.; Reiling, K. K.; Regentin, R.; Paddon, C. J. Production of isoprenoids. WO 2007140339A2 2007.

    152. [152]

      Renninger, N. S.; Mcphee, D. J. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US 2008083158A1, 2008.

    153. [153]

      Tsuruta, H.; Lenihan, J. R.; Regentin, R. WO 2009042070A2, 2009.

    154. [154]

      Chua, P. R.; Meadows, A. Methods for stabilizing production of acetyl-coenzyme a derived compounds. WO 2015020649A1, 2015.

    155. [155]

      Lowack, R.; Meyer, J.; Eggersdorfer, M.; Grafen, P. Preparation of alpha-tocopherol and alpha-tocopheryl acetate in liquid or supercritical carbon dioxide. US 5523420A, 1996.

    156. [156]

      Baldenius, K.; Kaiser, W.; Bockstiegel, B.; Laas, H.; Schulz, B.; Schmitt, P.; Glietenberg, H. Preparation of alpha-tocopherol or alpha-tocopheryl acetate by reacting trimethylhydroquinone and phytol or isophytol, with recycling of the zinc halide condensation catalyst. US 6005122A, 1999.

    157. [157]

      Krill, S.; Kretz, S.; Huthmacher, K. Process for the production of alpha-tocopherol acetate by condensation of trimethylhydroquinone with isophytol. EP 1132384A2, 2001.

    158. [158]

      Duan, H. Y.; Wang, Z. H.; Li, J. T.; Li, S. H.; Li, L. J.; Li, T. S. Synthetic. Commun. 2003, 33, 1867. doi: 10.1081/SCC-120020197  doi: 10.1081/SCC-120020197

    159. [159]

      Coman, S. M.; Wuttke, S.; Vimont, A.; Daturi, M.; Kemnitz, E. Adv. Synth. Catal. 2008, 350, 2517. doi: 10.1002/adsc.200800411  doi: 10.1002/adsc.200800411

    160. [160]

      Wuttke, S.; Coman, S. M.; Scholz, G.; Kirmse, H.; Vimont, A.; Daturi, M.; Schroeder, S. L. M.; Kemnitz, E. Chem. -Eur. J. 2008, 14, 11488. doi: 10.1002/chem.200801702  doi: 10.1002/chem.200801702

    161. [161]

      Candu, N.; Wuttke, S.; Kemnitz, E.; Coman, S. M.; Parvulescu, V. I. Appl. Catal. A 2011, 391, 169. doi: 10.1016/j.apcata.2010.08.004  doi: 10.1016/j.apcata.2010.08.004

    162. [162]

      Baak, M.; Bonrath, W.; Pauling, H. Process for manufacturing d, 1-alpha-tocopherol. CN 1237163A, 1999.

    163. [163]

      Bonrath, W.; Gockel, S.; Haas, A.; Netscher, T.; Pauling, H. Preparation of(all-rac)-alpha-tocopherol, which is an important member of vitamin E group, involves acid catalysis of trimethylhydroquinone with isophytol or phytol in presence of bis(perfluoroalkylsulfonyl)-methane. WO 2003070718P1, 2003.

    164. [164]

      Bonrath, W.; Wang, S. N. Preparation of d, 1-alpha-tocopherol. US 6423851B2, 2002.

    165. [165]

      Bonrath, W.; Dittel, C.; Netscher, T.; Pabst, T.; Giraudi, L. Process for the manufacture of alpha-tocopheryl acetate. WO 2004063182A1, 2004.

    166. [166]

      Bonrath, W.; Haas, A.; Hoppmann, E.; Netscher, T.; Pauling, H.; Schager, F.; Wildermann, A. Adv. Synth. Catal. 2002, 344, 37. doi: 10.1002/1615-4169(200201)344:1<37::aid-adsc37>3.0.co;2-4  doi: 10.1002/1615-4169(200201)344:1<37::aid-adsc37>3.0.co;2-4

    167. [167]

      Netscher, T.; Bonrath, W.; Haas, A.; Hoppmann, E.; Pauling, H. Chimia Inter. J. Chem. 2004, 58, 153. doi: 10.2533/000942904777678181  doi: 10.2533/000942904777678181

    168. [168]

      Bonrath, W.; Dittel, C.; Giraudi, L.; Netscher, T.; Pabst, T. Catal. Today 2007, 121, 65. doi: 10.1016/j.cattod.2006.11.022  doi: 10.1016/j.cattod.2006.11.022

    169. [169]

      Hasegawa, A.; Ishihara, K.; Yamamoto, H. Angew. Chem. Int. Ed. 2003, 42, 5731. doi: 10.1002/anie.200352382  doi: 10.1002/anie.200352382

    170. [170]

      Coman, S. M.; Pop, G.; Stere, C.; Parvulescu, V. I.; El Haskouri, J.; Beltrán, D.; Amorós, P. J. Catal.2007, 251, 388. doi: 10.1016/j.jcat.2007.08.001  doi: 10.1016/j.jcat.2007.08.001

    171. [171]

      Schager, F.; Bonrath, W. J. Catal. 1999, 182, 282. doi: 10.1006/jcat.1998.2351  doi: 10.1006/jcat.1998.2351

    172. [172]

      Wang, H.; Xu, B. Q. Appl. Catal. A 2004, 275, 247. doi: 10.1016/j.apcata.2004.07.038  doi: 10.1016/j.apcata.2004.07.038

    173. [173]

      Kozhevnikov, I. V.; Kulikov, S. M.; Chukaeva, N. G.; Kirsanov, A. T.; Letunova, A. B.; Blinova, V. I. React. Kinet. Catal. L. 1992, 47, 59. doi: 10.1007/bf02063560  doi: 10.1007/bf02063560

    174. [174]

      Xing, H. B.; Wang, T.; Zhou, Z. H.; Dai, Y. Y. Synthetic. Commun. 2006, 36, 2433. doi: 10.1080/00397910600781166  doi: 10.1080/00397910600781166

    175. [175]

      Laha, S. C.; Venkatesan, C.; Sakthivel, A.; Komura, K.; Kim, T. H.; Cho, S. J.; Huang, S. J.; Wu, P. H.; Liu, S. B.; Sasaki, Y.; et al. Micropor. Mesopor. Mater. 2010, 133, 82. doi: 10.1016/j.micromeso.2010.04.018  doi: 10.1016/j.micromeso.2010.04.018

    176. [176]

      Hirose, N.; Inoue, H.; Matsunami, T.; Yoshimura, T.; Morita, K.; Horikawa, Y.; Iwata, N.; Hayashi, K.; Seki, C.; Minami, N.; et al. Process for the preparation of alpha-tocopherol. CN 1123278A, 1996.

    177. [177]

      Kokubo, Y.; Hasegawa, A.; Kuwata, S.; Ishihara, K.; Yamamoto, H.; Ikariya, T. Adv. Synth. Catal. 2005, 347, 220. doi: 10.1002/adsc.200404312  doi: 10.1002/adsc.200404312

    178. [178]

      Xing, H. B.; Wang, T.; Dai, Y. Y. J. Supercrit. Fluid. 2009, 49, 52. doi: 10.1016/j.supflu.2008.12.003  doi: 10.1016/j.supflu.2008.12.003

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    6. [6]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(24)
  • Abstract views(1072)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return