Citation: LIU Shuang, SHAO Lianyi, ZHANG Xuejing, TAO Zhanliang, CHEN Jun. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 581-597. doi: 10.3866/PKU.WHXB201711222 shu

Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries

  • Corresponding author: TAO Zhanliang, taozhl@nankai.edu.cn
  • Received Date: 27 October 2017
    Revised Date: 15 November 2017
    Accepted Date: 16 November 2017
    Available Online: 22 June 2017

    Fund Project: the National Natural Science Foundation of China 51771094the National Key R & D Program of China 2016YFB0901500the National Key R & D Program of China 2016YFB0101201The project was supported by the National Key R & D Program of China (2016YFB0901500, 2016YFB0101201) and the National Natural Science Foundation of China (51771094)

  • With solar, wind, and other types of renewable energy incorporated into electrical grids and with the construction of smart grids, energy storage technology has become essential to optimize energy utilization. Due primarily to its abundance and low cost, aqueous rechargeable sodium-ion batteries (ARSBs) have received increasing attention in the field of electrochemical energy storage technology, and represent a promising alternative to energy storage in future power grids. However, because of the limitations of the thermodynamics of electrochemical processes in water, reactions in aqueous solution are more complicated compared to an organic system. Many parameters must be taken into account in an aqueous system, such as electrolyte concentration, dissolved oxygen content, and pH. As a result, it is challenging to select an appropriate electrode material, whose capacity, electrochemical potential, adaptability, and even catalytic effect may seriously affect the battery performance and hamper its application. Therefore, the development of advanced electrode materials, which can suppress side reactions of the battery and have good electrochemical performance, has become the focus of ARSB research. This paper briefly discusses the characteristics of ARSBs and summarizes the latest research progress in the development of electrode materials, including oxides, polyanionic compounds, Prussian blue analogues, and organics. This review also discusses the challenges remaining in the development of ARSBs, and suggests several ways to solve them, such as by using multivalent ions, hybridized electrolytes, etc., and speculates about future research directions. The studies and concepts discussed herein will advance the development of ARSBs and promote the optimization of energy utilization.
  • 加载中
    1. [1]

      Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev.2011, 111, 3577. doi: 10.1021/cr100290v  doi: 10.1021/cr100290v

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    3. [3]

      Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C.S. Nat. Commun. 2014, 5, 4033. doi: 10.1038/ncomms5033  doi: 10.1038/ncomms5033

    4. [4]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    5. [5]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed. 2015, 54, 3431. doi: 10.1002/anie.201410376  doi: 10.1002/anie.201410376

    6. [6]

      Fang, Y. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    7. [7]

      Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Sci. Adv. 2016, 2, e1501038. doi: 10.1126/sciadv.1501038  doi: 10.1126/sciadv.1501038

    8. [8]

      Yang, H. X.; Qian, J. F. J. Inorg. Mater. 2013, 28, 1165.  doi: 10.3724/SP.J.1077.2013.13388

    9. [9]

      Zhang, N.; Liu, Y. C.; Chen, C. C.; Tao, Z. L.; Chen, J.; Chin. J. Inorg. Chem. 2015, 31, 1739.  doi: 10.11862/cjic.2015.258

    10. [10]

      Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K. P.; Zhang, H.; Zhu, K. Energy Enviorn. Sci. 2013, 6, 2093. doi: 10.1039/C3EE24249H  doi: 10.1039/C3EE24249H

    11. [11]

      Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115. doi: 10. 1126/science.264.5162.1115  doi: 10.1126/science.264.5162.1115

    12. [12]

      Cao, Y.; Wang, Y. G.; Wang, Q.; Zhang, Z. Y.; Chen, Y.; Xia, Y. Y.; Dai, X. Energy Storage Sci. Technol.2016, 5, 317.  doi: 10.3969/j.issn.2095-4239.2016.03.008

    13. [13]

      Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/cr500232y  doi: 10.1021/cr500232y

    14. [14]

      Lu, Y.; Goodenough, J. B.; Kim, Y. J. Am. Chem. Soc. 2011, 133, 5756. doi:10.1021/ja201118f  doi: 10.1021/ja201118f

    15. [15]

      Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763  doi: 10.1038/nchem.763

    16. [16]

      Ghodbane, O.; Pascal, J. L.; Favie, F. ACS Appl. Mater. Interfaces 2009, 1, 1130. doi: 10.1021/am900094e  doi: 10.1021/am900094e

    17. [17]

      Hill, L. I.; Verbaere, A.; Guyomard, D. J. Power Sources 2003, 119–121, 226. doi: 10.1016/S0378-7753(03)00238-6  doi: 10.1016/S0378-7753(03)00238-6

    18. [18]

      Cao, J.; Mao, Q. H.; Shi, L.; Qian, Y. T. J. Mater. Chem. 2011, 21, 16210. doi: 10.1039/C1JM10862J  doi: 10.1039/C1JM10862J

    19. [19]

      Kitchaev, D. A.; Dacek, S. T.; Sun, W. H.; Ceder, G. J. Am. Chem. Soc. 2017, 139, 2672. doi: 10.1021/jacs.6b11301  doi: 10.1021/jacs.6b11301

    20. [20]

      Tarascon, J. M.; Guyomard, D. G.; Wilkens, B.; Mc Kinnon, W. R.; Barboux, P. Solid State Ionics 1992, 57, 113. doi: 10.1016/0167-2738(92) 90072-W  doi: 10.1016/0167-2738(92)90072-W

    21. [21]

      Kanoh, H.; Tang, W.; Makita, Y.; Ooi, K. Langmuir 1997, 13, 6845. doi: 10.1021/la970767d  doi: 10.1021/la970767d

    22. [22]

      Athouel, L.; Moser, F.; Dugas, R.; Crosnier, O.; Belanger, D.; Brousse, T. J. Phys. Chem. C 2008, 112, 7270. doi: 10.1021/jp0773029  doi: 10.1021/jp0773029

    23. [23]

      Athouel, L.; Moser, F.; Dugas, R.; Crosnier, O.; Belanger, D.; Brousse, T. ECS Trans. 2008, 16, 119. doi: 10.1149/1.2985634  doi: 10.1149/1.2985634

    24. [24]

      Shao, J.; Li, X. Y.; Qu, Q. T.; Wu, Y. P. J. Power Sources 2013, 223, 56. doi: 10.1016/j.jpowsour.2012.09.046  doi: 10.1016/j.jpowsour.2012.09.046

    25. [25]

      Komaba, S.; Ogata, A.; Tsuchikawa, T. Electrochem. Commun. 2008, 10, 1435. doi: 10.1016/j.elecom.2008.07.025  doi: 10.1016/j.elecom.2008.07.025

    26. [26]

      Minakshi, M. Mater. Sci. Eng. B 2012, 177, 1788. doi: 10.1016/j.mseb.2012.09.003  doi: 10.1016/j.mseb.2012.09.003

    27. [27]

      Qu, Q. T.; Liu, L. L.; Wu, Y. P.; Holze, R. Electrochim. Acta 2013, 96, 8. doi: 10.1016/j.electacta.2013.02.078  doi: 10.1016/j.electacta.2013.02.078

    28. [28]

      Sun X.. Structures and Electrochemical Performances of Transition Metal Oxides NaMO2 as Electrode Materials for Sodium-Ion Batteries. Ph. D. Dissertation[J]. University of Science and Technology of China, Anhui, 2016.

    29. [29]

      Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Chem. Eur. J. 2013. 19, 10884. doi: 10.1002/chem.201301563  doi: 10.1002/chem.201301563

    30. [30]

      Liu, Y. C.; Chen, C. C.; Zhang, N.; Wang, L. B.; Xiang, X. D.; Chen, J. J. Electrochem. 2016, 22, 437.  doi: 10.13208/j.electrochem.160548

    31. [31]

      Sauvage, F.; Baudrin, E.; Tarascon, J. M. Sens. Actuators, B 2007, 120, 638. doi: 10.1016/j.snb.2006.03.024  doi: 10.1016/j.snb.2006.03.024

    32. [32]

      Parant, J. P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. J. Solid State Chem. 1971, 3, 1. doi: 10.1016/0022-4596(71)90001-6  doi: 10.1016/0022-4596(71)90001-6

    33. [33]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    34. [34]

      Kim, D. J.; Ponraj, R.; Kannan, A. G.; Lee, H. W.; Fathi, R.; Ruffo, R.; Mari, C. M.; Kim, D. K. J. Power Sources 2013, 244, 758. doi: 10.1016/j.jpowsour.2013.02.090  doi: 10.1016/j.jpowsour.2013.02.090

    35. [35]

      Liu, X.; Zhang, N.; Ni, J.; Gao, L. J. Solid State Electrochem. 2013, 17, 1939. doi: 10.1007/s10008-013-2044-0  doi: 10.1007/s10008-013-2044-0

    36. [36]

      Dai, K.; Mao, J.; Song, X.; Battaglia, V.; Liu, G. J. Power Sources 2015, 285, 161. doi: 10.1016/j.jpowsour.2015.03.087  doi: 10.1016/j.jpowsour.2015.03.087

    37. [37]

      Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R. J. Power Sources 2014, 253, 98. doi: 10.1016/j.jpowsour.2013.12.011  doi: 10.1016/j.jpowsour.2013.12.011

    38. [38]

      Tevar, A. D.; Whitacre, J. F. J. Electrochem. Soc. 2010, 157, A870. doi: 10.1149/1.3428667  doi: 10.1149/1.3428667

    39. [39]

      Zhang, X. Q.; Hou, A. G.; Li, A. N.; Liang, A. W.; Zhu, Y. C.; Qian, Y. T. J. Mater. Chem. A 2016, 4, 856. doi: 10.1039/C5TA08857G  doi: 10.1039/C5TA08857G

    40. [40]

      Yu, F.; Zhang, S. M.; Fang, C.; Liu, Y.; He, S. Y.; Xia, J.; Yang, J. H.; Zhang, N. Ceram. Int. 2017, 43, 9960. doi: 10.1016/j.ceramint.2017.05.007  doi: 10.1016/j.ceramint.2017.05.007

    41. [41]

      Liu, Y.; Qiao, Y.; Zhang, W.; Xu, H.; Li, Z.; Shen, Y.; Yuan, L.; Hu, X.; Dai, X.; Huang, Y. H. Nano Energy 2014, 5, 97. doi: 10.1016/j.nanoen.2014.02.010  doi: 10.1016/j.nanoen.2014.02.010

    42. [42]

      Liu, Y.; Qiao, Y.; Lou, X. F.; Zhang, X. H.; Huang, Y. H. ACS Appl. Mater. Inter. 2016, 8, 14564. doi: 10.1021/acsami.6b03089  doi: 10.1021/acsami.6b03089

    43. [43]

      Wang, Y. S.; Mu, L. Q.; Liu, J.; Yang, Z. Z.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; et al. Adv. Energy Mater. 2015, 5, 1501005. doi: 10.1002/aenm.201501005  doi: 10.1002/aenm.201501005

    44. [44]

      Jung, Y. H.; Hong, S. T.; Kim, D. K. J. Electrochem. Soc. 2013, 160, A897. doi: 10.1149/2.113306jes  doi: 10.1149/2.113306jes

    45. [45]

      Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Solid State Ionics 2000, 130, 41. doi: 10.1016/S0167-2738(00)00311-8  doi: 10.1016/S0167-2738(00)00311-8

    46. [46]

      Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 2581. doi: 10.1149/1.1837868  doi: 10.1149/1.1837868

    47. [47]

      Tarascon, J. M.; Armand, M. Nature2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    48. [48]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.  doi: 10.3866/PKU.WHXB201608303

    49. [49]

      Song, W. W.; Ji, X. B.; Zhu, Y.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. ChemElectroChem2014, 1, 871. doi: 10.1002/celc.201300248  doi: 10.1002/celc.201300248

    50. [50]

      Mason, C. M.; Lange, F. ECS Electrochem. Lett. 2015, 4, A79. doi: 10.1149/2.0011508eel  doi: 10.1149/2.0011508eel

    51. [51]

      Fernandez-Ropero, A. J.; Saurel, D.; Acebedo, B.; Rojo, T.; Casas-Cabanas, M. J. Power Sources 2015, 291, 40. doi: 10.1016/j.jpowsour.2015.05.006  doi: 10.1016/j.jpowsour.2015.05.006

    52. [52]

      Vujkovic, M.; Mentus, S. J. Power Sources 2014, 247, 184. doi: 10.1016/j.jpowsour.2013.08.062  doi: 10.1016/j.jpowsour.2013.08.062

    53. [53]

      Levi, M. D.; Sigalov, S.; Salitra, G.; Elazari, R.; Aurbach, D.; Daikhin, L.; Presser, V. J. Phys. Chem. C 2013, 117, 1247. doi: 10.1021/jp3117819  doi: 10.1021/jp3117819

    54. [54]

      Zhao, Z. W.; Si, X. F.; Liang, X. X.; Liu, X. H.; He, L. H. Trans. Nonferrous Met. Soc. China 2013, 23, 1157. doi: 10.1016/S1003-6326(13)62578-9  doi: 10.1016/S1003-6326(13)62578-9

    55. [55]

      Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Chem. Mater. 2010, 22, 4126. doi: 10.1021/cm101377h  doi: 10.1021/cm101377h

    56. [56]

      Li, Z.; Ravnsbaek, D. B.; Xiang, K. B.; Chiang, Y. M. Electrochem. Commun. 2014, 44, 12. doi:10.1016/j.elecom.2014.04.003  doi: 10.1016/j.elecom.2014.04.003

    57. [57]

      Minakshi, M.; Meyrick, D. J. Alloys Compd. 2013, 555, 10. doi: 10.1016/j.jallcom.2012.11.203  doi: 10.1016/j.jallcom.2012.11.203

    58. [58]

      Minakshi, M.; Meyrick, D.; Appadoo, D. Energ. Fuel. 2013, 27, 3516. doi: 10.1021/ef400333s  doi: 10.1021/ef400333s

    59. [59]

      Deng, C.; Zhang, S.; Wu, Y. X. Nanoscale 2015, 7, 487. doi: 10.1039/C4NR05175K  doi: 10.1039/C4NR05175K

    60. [60]

      Vujkovic, M.; Mentus, S. J. Power Sources 2016, 325, 185. doi: 10.1016/j.jpowsour.2016.06.031  doi: 10.1016/j.jpowsour.2016.06.031

    61. [61]

      Qin, H.; Song, Z. P.; Zhan, H.; Zhou, Y. H. J. Power Sources 2014, 249, 367. doi:10.1016/j.jpowsour.2013.10.091  doi: 10.1016/j.jpowsour.2013.10.091

    62. [62]

      Kumar, P. R.; Jung, Y. H.; Lim, C. H.; Kim, D. K. J. Mater. Chem. A 2015, 3, 6271. doi: 10.1039/C5TA00980D  doi: 10.1039/C5TA00980D

    63. [63]

      Kumar, P. R.; Jung, Y. H.; Moorthy, B.; Kim, D. K. J. Electrochem. Soc. 2016, 163, A1484. doi: 10.1149/2.0031608jes  doi: 10.1149/2.0031608jes

    64. [64]

      Jung, Y. H.; Lim, C. H.; Kim, J. H.; Kim, D. K. RSC Adv. 2014, 4, 9799. doi: 10.1039/C3RA47560C  doi: 10.1039/C3RA47560C

    65. [65]

      Bocarsly, A. B.; Sinha, S. J. Electroanal. Chem. 1982, 137, 157. doi: 10.1016/0022-0728(82)85075-4  doi: 10.1016/0022-0728(82)85075-4

    66. [66]

      Bocarsly, A. B.; Sinha, S. J. Electroanal. Chem. 1982, 140, 167. doi: 10.1016/0368-1874(82)85310-0  doi: 10.1016/0368-1874(82)85310-0

    67. [67]

      Itaya, K.; Uchida, I.; Neff, V. D. Acc. Chem. Res. 1986, 19, 162. doi: 10.1021/ar00126a001.  doi: 10.1021/ar00126a001

    68. [68]

      Kalwellis-Mohn, S.; Grabner, E. W. Electrochim. Acta 1989, 34, 1265. doi:10.1016/0013-4686(89)87169-5  doi: 10.1016/0013-4686(89)87169-5

    69. [69]

      Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y. Nano Lett. 2011, 11, 5421. doi: 10.1021/nl203193q  doi: 10.1021/nl203193q

    70. [70]

      Wessells, C. D.; Peddada, S. V.; McDowell, M. T.; Huggins, R. A.; Cui, Y. J. Electrochem. Soc. 2012, 159, A98. doi: 10.1149/2.060202jes  doi: 10.1149/2.060202jes

    71. [71]

      Wessells, C. D.; Huggins, R. A.; Cui, Y. Nat. Commun. 2011, 2, 550. doi: 10.1038/ncomms1563  doi: 10.1038/ncomms1563

    72. [72]

      Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. Nat. Commun. 2012, 3, 1149. doi: 10.1038/ncomms2139  doi: 10.1038/ncomms2139

    73. [73]

      Wessells, C. D.; McDowell, M. T.; Peddada, S. V.; Pasta, M.; Huggins, R. A.; Cui, Y. ACS Nano 2012, 6, 1688. doi: 10.1021/nn204666v  doi: 10.1021/nn204666v

    74. [74]

      Kim, D. J.; Jung, Y. H.; Bharathi, K. K.; Je, S. H.; Kim, D. K.; Coskun, A.; Choi, J. K. Energy Mater. 2014, 4, 1400133. doi: 10.1002/aenm.201400133  doi: 10.1002/aenm.201400133

    75. [75]

      Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. Electrochem. Commun. 2013, 31, 145. doi: 10.1016/j.elecom.2013.03.013  doi: 10.1016/j.elecom.2013.03.013

    76. [76]

      Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. ChemSusChem 2014, 7, 407. doi: 10.1002/cssc.201301036  doi: 10.1002/cssc.201301036

    77. [77]

      Wu, X. Y.; Sun, M. Y.; Guo, S. M.; Qian, J. F.; Liu, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. ChemNanoMat 2015, 1, 188. doi: 10.1002/cnma.201500021  doi: 10.1002/cnma.201500021

    78. [78]

      Wu, X. Y.; Luo, Y.; Sun, M. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Nano Energy 2015, 13, 117. doi: 10.1016/j.nanoen.2015.02.006  doi: 10.1016/j.nanoen.2015.02.006

    79. [79]

      Chen, L.; Shao, H. Z.; Zhou, X. F.; Liu, G. Q.; Jiang, J.; Liu, Z. P. Nat. Commun. 2016, 7, 11982.doi: 10.1038/ncomms11982  doi: 10.1038/ncomms11982

    80. [80]

      Li, W. F.; Zhang, F.; Xiang, X. D.; Zhang, X. C. ChemElectroChem 2017, 4, 2870. doi: 10.1002/celc.201700776  doi: 10.1002/celc.201700776

    81. [81]

      Paulitsch, B.; Yun, J.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2017, 9, 8107. doi: 10.1021/acsami.6b15666  doi: 10.1021/acsami.6b15666

    82. [82]

      Lee, J. H.; Ali, G.; Kim, D. H.; Chung, K. Y. Adv. Energy Mater. 2017, 7, 1601491. doi: 10.1002/aenm.201601491  doi: 10.1002/aenm.201601491

    83. [83]

      Zhu, Z. Q.; Li, H.; Liang, J.; Tao, Z. L.; Chen, J. Chem. Commun. 2015, 51, 1446. doi: 10.1039/C4CC08220F  doi: 10.1039/C4CC08220F

    84. [84]

      Guo, C. Y.; Zhang, K.; Zhao, Q.; Pei, L. K.; Chen, J. Chem. Commun. 2015, 51, 10244. doi: 10.1039/C5CC02251G  doi: 10.1039/C5CC02251G

    85. [85]

      Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Nano Lett. 2013, 13, 4404. doi: 10.1021/nl402239p  doi: 10.1021/nl402239p

    86. [86]

      Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Chem. Commun. 2009, 7, 836. doi:10.1039/b818087c  doi: 10.1039/b818087c

    87. [87]

      Whitacre, J. F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12, 463. doi: 10.1016/j.elecom.2010.01.020  doi: 10.1016/j.elecom.2010.01.020

    88. [88]

      Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Adv. Mater. 2007, 19, 3712. doi: 10.1002/adma.200700883  doi: 10.1002/adma.200700883

    89. [89]

      Xia, X. F.; Hao, Q. L.; Lei, W.; Wang, W. J.; Wang, H. L.; Wang, X. J. Mater. Chem. 2012, 22, 8314. doi: 10.1039/C2JM16216D  doi: 10.1039/C2JM16216D

    90. [90]

      Zhou, L.; Yang, L. C.; Yuan, P.; Zou, J.; Wu, Y. P.; Yu, C. Z. J. Phys. Chem. C 2010, 114, 21868. doi: 10.1021/jp108778v  doi: 10.1021/jp108778v

    91. [91]

      Deng, C.; Zhang, S.; Dong, Z.; Shang, Y. Nano Energy 2014, 4, 49. doi: 10.1016/j.nanoen.2013.12.014  doi: 10.1016/j.nanoen.2013.12.014

    92. [92]

      Vujkovic, M.; Paunkovic, B. S.; Simatovic, I. S.; Mitric, M.; Sequeira, C. A. C.; Mentus. S. Electrochim. Acta 2014, 147, 167. doi: 10.1016/j.electacta.2014.08.137  doi: 10.1016/j.electacta.2014.08.137

    93. [93]

      Wang, Y. S.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z. Z.; Xu, S. Y.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Yang, W. L.; et al. Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401  doi: 10.1038/ncomms7401

    94. [94]

      Pang, G.; Yuan, C. A.; Nie, P.; Ding, B.; Zhu, J. J.; Zhang, X. G. Nanoscale 2014, 6, 6328. doi: 10.1039/C3NR06730K  doi: 10.1039/C3NR06730K

    95. [95]

      Delmas, C.; Cherkaoui, F.; Nadiri, A.; Hagenmuller, P. Mater. Res. Bull. 1987, 22, 631. doi: 10.1016/0025-5408(87)90112-7  doi: 10.1016/0025-5408(87)90112-7

    96. [96]

      Park, S.; II; Gocheva, I.; Okada, S.; Yamaki, J. I. J. Electrochem. Soc. 2011, 158, A1067. doi: 10.1149/1.3611434  doi: 10.1149/1.3611434

    97. [97]

      Arun, N.; Aravindan, V.; Ling, W. C.; Madhavi, S. J. Alloys Compd. 2014, 603, 48. doi: 10.1016/j.jallcom.2014.03.059  doi: 10.1016/j.jallcom.2014.03.059

    98. [98]

      Mohamed, A. I.; Whitacre. J. F. Electrochim. Acta 2017, 235, 730. doi: 10.1016/j.electacta.2017.03.106  doi: 10.1016/j.electacta.2017.03.106

    99. [99]

      Wu, W.; Mohamed, A.; Whitacre, J. F. J. Electrochem. Soc. 2013, 160, A497. doi: 10.1149/2.054303jes  doi: 10.1149/2.054303jes

    100. [100]

      Wu, W.; Yan, J.; Wise, A.; Rutt, A.; Whitacre, J. F. J. Electrochem. Soc. 2014, 161, A561. doi: 10.1149/2.059404jes  doi: 10.1149/2.059404jes

    101. [101]

      Pang, G.; Nie, P.; Yuan, C. Z.; Shen, L. F.; Zhang, X. G.; Zhu, J. J.; Ding, B. Energy Technol. 2014, 2, 705. doi: 10.1002/ente.201402045  doi: 10.1002/ente.201402045

    102. [102]

      Li, X. N.; Zhu, X. B.; Liang, J. W.; Hou, Z. G.; Wang, Y.; Lin, N.; Zhu, Y. C.; Qian, Y. T. J. Electrochem. Soc. 2014, 161, A1181. doi: 10.1149/2.0081409jes  doi: 10.1149/2.0081409jes

    103. [103]

      Zhao, B. D.; Lin, B.; Zhang, S.; Deng, C. Nanoscale 2015, 7, 18552. doi: 10.1039/C5NR06505d  doi: 10.1039/C5NR06505d

    104. [104]

      Hung, T. F.; Lan, W. H.; Yeh, Y. W.; Chang, W. S.; Yang, C. C.; Lin, J. C. ACS Sustain. Chem. Eng. 2016, 4, 7074. doi: 10.1021/acssuschemeng.6b01962  doi: 10.1021/acssuschemeng.6b01962

    105. [105]

      He, Y. W.; Yuan, H.; Wu, Y. X.; Chen, C.; Yang, S.; Ai, C. C. Electrochemistry 2016, 84, 705. doi: 10.5796/electrochemistry.84.705  doi: 10.5796/electrochemistry.84.705

    106. [106]

      Ke, L. L.; Dong, J.; Lin, B.; Yu, T. T.; Wang, H. F.; Zhang, S.; Deng, C. Nanoscale 2017, 9, 4183. doi: 10.1039/C7NR00793K  doi: 10.1039/C7NR00793K

    107. [107]

      Minakshi, M.; Ralph, D. ECS Trans. 2013, 45, 95. doi: 10.1149/04529.0095ecst  doi: 10.1149/04529.0095ecst

    108. [108]

      Pasta, M.; Wessells, C. D.; Liu, N.; Nelson, J.; McDowell, M. T.; Huggins, R. A.; Toney, M. F.; Cui, Y. Nat. Commun. 2014, 5, 3007. doi: 10.1038/ncomms4007  doi: 10.1038/ncomms4007

    109. [109]

      Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. Am. Chem. Soc. 2011, 133, 19839. doi: 10.1021/ja206961t  doi: 10.1021/ja206961t

    110. [110]

      Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Nat. Mater. 2017, 16, 841. doi: 10.1038/nmat4919  doi: 10.1038/nmat4919

    111. [111]

      Liu, Y.; Qiao, Y.; Zhang, W. X.; Wang, H.; Chen, H. K.; Zhu, H. P.; Li, Z.; Huang, Y. H. J. Mater. Chem. A 2015, 3, 7780. doi: 10.1039/C5TA00396B  doi: 10.1039/C5TA00396B

    112. [112]

      Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598  doi: 10.1002/aenm.201200598

    113. [113]

      Zhang, Q.; Liao, C. Y.; Zhai, T. Y.; Li, H. Q. Electrochim. Acta 2016, 196, 470. doi:10.1016/j.electacta.2016.03.007  doi: 10.1016/j.electacta.2016.03.007

    114. [114]

      Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; et al. J. Power Sources 2012, 213, 255. doi: 10.1016/j.jpowsour.2012.04.018  doi: 10.1016/j.jpowsour.2012.04.018

    115. [115]

      Liu, Y.; Zhang, B. H.; Xiao, S. Y.; Liu, L. L.; Wen, Z. B.; Wu, Y. P. Electrochim. Acta 2014, 116, 512. doi: 10.1016/j.electacta.2013.11.077  doi: 10.1016/j.electacta.2013.11.077

    116. [116]

      Minakshi, M.; Meyrick, D. Electrochim. Acta 2013, 101, 66. doi: 10.1016/j.electacta.2013.02.075  doi: 10.1016/j.electacta.2013.02.075

    117. [117]

      Hou, Z. G.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. J. Mater. Chem. A 2015, 3, 1400. doi: 10.1039/C4TA06018K  doi: 10.1039/C4TA06018K

    118. [118]

      Qu, Q. T.; Shi, Y.; Tian, S.; Chen, Y. H.; Wu, Y. P.; Holze, R.; J. Power Sources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068  doi: 10.1016/j.jpowsour.2009.06.068

    119. [119]

      Zhang, B. H.; Liu, Y.; Wu, X. W.; Yang, Y. Q.; Chang, Z.; Wen, Z. B.; Wu, Y. P. Chem. Commun. 2014, 50, 1209. doi: 10.1039/c3cc48382g  doi: 10.1039/c3cc48382g

    120. [120]

      Wang, H., Zhang, T., Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. Nano Res. 2017, doi: 10.1007/s12274-017-1657-5  doi: 10.1007/s12274-017-1657-5

    121. [121]

      Gao, H. C.; Goodenough, J. B. Angew. Chem. Int. Ed. 2016, 128, 12960. doi:10.1002/ange.201606508  doi: 10.1002/ange.201606508

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    20. [20]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

Metrics
  • PDF Downloads(24)
  • Abstract views(397)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return