Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions
- Corresponding author: GEERLINGS Paul, pgeerlin@vub.ac.be
Citation: GEERLINGS Paul, DE PROFT Frank, FIAS Stijn. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 699-707. doi: 10.3866/PKU.WHXB201711221
Parr, R. G.; Yang, W. Ann. Rev. Phys. Chem. 1995, 46, 701.doi: 10.1146/annurev.pc.46.100195.003413
doi: 10.1146/annurev.pc.46.100195.003413
Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AIDJCC13 > 3.0.CO; 2-A
doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
doi: 10.1021/cr990029p
De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101, 1451. doi: 10.1021/cr9903205
doi: 10.1021/cr9903205
Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307
doi: 10.1002/qua.20307
Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
doi: 10.3866/PKU.WHXB20090332
Gross, E. K. U.; Kohn, W. Phys. Rev. Lett. 1985, 55, 2850. doi: 10.1103/PhysRevLett.55.2850
doi: 10.1103/PhysRevLett.55.2850
Casida, M. E. Recent Advances in Density Functional Methods; Chong, D. P. Ed.; World Scientific Pub. Co. Inc.: Singapore, 1995; p. 155.
Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.
Ayers, P.W.; De Proft, F.; Borgoo, A.; Geerlings, P. J. Chem. Phys. 2007, 126, 224107. doi: 10.1063/1.2736697
doi: 10.1063/1.2736697
Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228. doi: 10.1021/jz1002132
doi: 10.1021/jz1002132
Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577
doi: 10.1021/ct1004577
Fias, S.; Boisdenghien, Z.; Stuyver, T.; Audiffred, M.; Merino, G.; Geerlings, P.; De Proft, F. J. Phys. Chem. A 2013, 117, 3556. doi: 10.1021/jp401760j
doi: 10.1021/jp401760j
Fias, S.; Geerlings, P.; Ayers, P.; De Proft, F. Phys. Chem. Chem. Phys. 2013, 15, 2882. doi: 10.1039/c2cp43612d
doi: 10.1039/c2cp43612d
Boisdenghien, Z.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. J. Chem. Theory Comp. 2013, 9, 1007. doi: 10.1021/ct300861r
doi: 10.1021/ct300861r
Yang, W.; Cohen, A. J.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2012, 136, 144110. doi: 10.1063/1.3701562
doi: 10.1063/1.3701562
Boisenghien, Z.; Fias, S.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. Phys. Chem. Chem. Phys. 2014, 16, 14614. doi: 10.1039/c4cp01331j
doi: 10.1039/c4cp01331j
Fias, S.; Boisdenghien, Z.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2014, 141, 184107. doi: 10.1063/1.4900513
doi: 10.1063/1.4900513
Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j
doi: 10.1039/c3cs60456j
Geerlings, P.; Boisdenghien, Z.; De Proft, F.; Fias, S. Theor. Chem. Acc. 2016, 135, 213. doi: 10.1007/s00214-016-1967-9
doi: 10.1007/s00214-016-1967-9
Stuyver, T.; Fias, S.; De Proft, F.; Fowler, P.; Geerlings, P. J. Chem. Phys. 2015, 142, 094103. doi: 10.1063/1.4913415
doi: 10.1063/1.4913415
Nalewajski, R. F.; Parr, R. G. J. Chem. Phys. 1982, 77, 399. doi: 10.1063/1.443620
doi: 10.1063/1.443620
Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034
doi: 10.1063/1.454034
Senet, P. J. Chem. Phys. 1996, 105, 6471. doi: 10.1063/1.472498
doi: 10.1063/1.472498
Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007. doi: 10.1021/ja002966g
doi: 10.1021/ja002966g
Ayers, P. W. Theor. Chem. Acc. 2001, 106, 271. doi: 10.1007/PL00012385
doi: 10.1007/PL00012385
Liu, S.; Li, T.; Ayers, P. W. J. Chem. Phys. 2009, 131, 114106. doi: 10.1063/1.3231687
doi: 10.1063/1.3231687
Yang, W.; Parr, R. Proc. Natl. Acad. Sci. USA 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
doi: 10.1073/pnas.82.20.6723
Mendez, F.; Gazquez, J. L. J. Am. Chem. Soc. 1994, 116, 9298. doi: 10.1021/ja00099a055
doi: 10.1021/ja00099a055
Damoun, S.; Van de Woude, G.; Mendez, F.; Geerlings, P. J. Phys. Chem. 1997, 101, 886. doi: 10.1021/jp9611840
doi: 10.1021/jp9611840
Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi: 10.1002/1097-461X(2000)80:2 < 227::AID-QUA17 > 3.3.CO; 2-E
doi: 10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.3.CO;2-E
Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039
doi: 10.1016/j.cplett.2016.07.039
Kohn, W. Phys. Rev. Lett. 1996, 76, 3168. doi: 10.1103/PhysRevLett.76.3168
doi: 10.1103/PhysRevLett.76.3168
Prodan, E.; Kohn, W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635. doi: 10.1073/pnas.0505436102
doi: 10.1073/pnas.0505436102
Fias, S.; Heidar-Zadeh, F.; Geerlings, P.; Ayers, P. W. Proc. Natl. Acad. Sci. USA 2017, 114, 11633. doi: 10.1073/pnas.1615053114
doi: 10.1073/pnas.1615053114
Berkowitz, M.; Ghosh, S. K.; Parr, R. J. Am. Chem. Soc. 1985, 107, 6811. doi: 10.1021/ja00310a011
doi: 10.1021/ja00310a011
Ghosh, S. K.; Berkowitz, M. J. Chem. Phys. 1985, 83, 2976. doi: 10.1063/1.449846
doi: 10.1063/1.449846
Ghosh, S. K. Chem. Phys. Lett. 1990, 172, 77. doi: 10.1016/0009-2614(90)87220-L
doi: 10.1016/0009-2614(90)87220-L
Harbola, M. K.; Chattaraj, P. K.; Parr, R. G. Isr. J. Chem. 1991, 31, 395.
doi: 10.1002/ijch.v31.4
Langenaeker, W.; De Proft, F.; Geerlings, P. J. Phys. Chem. 1995, 99, 6424. doi: 10.1021/j100017a022
doi: 10.1021/j100017a022
Chamorro, E.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2005, 123, 154104. doi: 10.1063/1.2072907
doi: 10.1063/1.2072907
Torrent-Sucarrat, M.; Salvador, P.; Sola, M.; Geerlings, P. J. Comp. Chem. 2007, 28, 574. doi: 10.1002/jcc.20535
doi: 10.1002/jcc.20535
Chattaraj, P.; Roy, D. R.; Geerlings, P.; Torrent-Sucarrat, M. Theor. Chem. Acc. 2007, 118, 923. doi: 10.1007/s00214-007-0373-8
doi: 10.1007/s00214-007-0373-8
Polanco-Ramirez, C. A.; Franco-Perez, M.; Carmona-Espindola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/c7cp00691h
doi: 10.1039/c7cp00691h
Liu, S.; Parr, R. G. J. Chem. Phys. 1997, 106, 5578. doi: 10.1063/1.473580
doi: 10.1063/1.473580
Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243. doi: 10.1002/qua.560240302
doi: 10.1002/qua.560240302
Eschrig, H. The Fundamentals of Density Functional Theory; Teubner: Stuttgart-Leipzig, Germany, 1996.
Kvaal, S.; Ekstrom, U.; Teale, A. M.; Helgaker, T. J. Chem. Phys. 2014, 140, 18A518. doi: 10.1063/1.4867005
doi: 10.1063/1.4867005
Perdew, J.; Parr, R.; Levy, M.; Balduz, J. L. J. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691
doi: 10.1103/PhysRevLett.49.1691
Fias, S. ; Geerlings, P. ; De Proft, F. ; Ayers, P. W. in preparation.
Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
doi: 10.1073/pnas.81.24.8028
Nagy, A.; Parr, R. G. Proc. Indian Acad. Sci. 1994, 106, 217.
Nagy, A.; Parr, R. G. J. Mol. Struct. THEOCHEM 2000, 501–502, 101. doi: 10.1016/S0166-1280[99]00418-2
doi: 10.1016/S0166-1280[99]00418-2
Nagy, A. Int. J. Quantum Chem. 2017, 117, e25396. doi: 10.1002/qua.25396
doi: 10.1002/qua.25396
Callen, H. B. Thermodynamics and an Introduction to Thermostatistics; John Wiley: New York, NY, USA, 1985.
Prigogine, I.; Defay, R. Chemical Thermodynamics; Longman: London, UK, 1954.
Berry, R. S.; Rice, S. A.; Ross, J. Physical Chemistry; Wiley: New York, NY, USA, 1980.
Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.; Ayers, P. W. J. Chem. Phys. 2009, 130, 244105. doi: 10.1063/1.3151599
doi: 10.1063/1.3151599
Ayers, P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513
doi: 10.1103/PhysRevA.73.012513
Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422
doi: 10.1063/1.4938422
Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539
doi: 10.1063/1.4932539
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Ying Zhao , Yin-Hang Chai , Tian Chen , Jie Zheng , Ting-Ting Li , Francisco Aznarez , Li-Long Dang , Lu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567