Citation: GEERLINGS Paul, DE PROFT Frank, FIAS Stijn. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 699-707. doi: 10.3866/PKU.WHXB201711221 shu

Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions

  • Corresponding author: GEERLINGS Paul, pgeerlin@vub.ac.be
  • Received Date: 11 September 2017
    Revised Date: 3 November 2017
    Accepted Date: 10 November 2017
    Available Online: 22 June 2017

    Fund Project: S.F. wishes to thank the Research Foundation Flanders (FWO) and the European Union's Horizon 2020 Marie Sklodowska-Curie grant (No. 706415) for financially supporting his post-doctoral research at the ALGC group. F.D.P. and P.G. acknowledge the Research Foundation-Flanders (FWO) and the Vrije Universiteit Brussel (VUB) for continuous support to the ALGC research group, in particular the VUB for a Strategic Research Program awarded to ALGC, started up at January 1, 2013. F.D.P. also acknowledges the Francqui foundation for a position as Francqui Research Professor

  • In view of its use as reactivity theory, Conceptual Density Functional Theory (DFT), introduced by Parr et al., has mainly concentrated up to now on the E = E[N, v] functional. However, different ensemble representations can be used involving other variables also, such as ρ and µ. In this study, these different ensemble representations (E, , F, and R) are briefly reviewed. Particular attention is then given to the corresponding second-order (functional) derivatives, and their analogies with the second-order derivatives of thermodynamic state functions U, F, H, and G, which are related to each other via Legendre transformations, just as the DFT functionals (Nalewajski and Parr, 1982). Starting from an analysis of the convexity/concavity of the DFT functionals, for which explicit proofs are discussed for some cases, the positive/negative definiteness of the associated kernels is derived and a detailed comparison is made with the thermodynamic derivatives.The stability conditions in thermodynamics are similar in structure to the convexity/concavity conditions for the DFT functionals. Thus, the DFT functionals are scrutinized based on the convexity/concavity of their two variables, to yield the possibility of establishing a relationship between the three second-order reactivity descriptors derived from the considered functional. Considering two ensemble representations, F and , F is eliminated as it has two dependent (extensive) variables, N and ρ. For , on the other hand, which is concave for both of its intensive variables (µ and υ), an inequality is derived from its three second-order (functional) derivatives: the global softness, the local softness, and the softness kernel. Combined with the negative value of the diagonal element of the linear response function, this inequality is shown to be compatible with the Berkowitz-Parr relationship, which relates the functional derivatives of ρ with υ, at constant N and µ. This was recently at stake upon quantifying Kohn's Nearsightedness of Electronic Matter. The analogy of the resulting inequality and the thermodynamic inequality for the G derivatives is highlighted. Potential research paths for this study are briefly addressed; the analogies between finite-temperature DFT response functions and their thermodynamic counterparts and the quest for analogous relationships, as derived in this paper, for DFT functionals that are analogues of entropy-dimensioned thermodynamic functions such as the Massieu function.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Ann. Rev. Phys. Chem. 1995, 46, 701.doi: 10.1146/annurev.pc.46.100195.003413  doi: 10.1146/annurev.pc.46.100195.003413

    2. [2]

      Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AIDJCC13 > 3.0.CO; 2-A  doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    4. [4]

      De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101, 1451. doi: 10.1021/cr9903205  doi: 10.1021/cr9903205

    5. [5]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    6. [6]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    7. [7]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    8. [8]

      Gross, E. K. U.; Kohn, W. Phys. Rev. Lett. 1985, 55, 2850. doi: 10.1103/PhysRevLett.55.2850  doi: 10.1103/PhysRevLett.55.2850

    9. [9]

      Casida, M. E. Recent Advances in Density Functional Methods; Chong, D. P. Ed.; World Scientific Pub. Co. Inc.: Singapore, 1995; p. 155.
       

    10. [10]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.

    11. [11]

      Ayers, P.W.; De Proft, F.; Borgoo, A.; Geerlings, P. J. Chem. Phys. 2007, 126, 224107. doi: 10.1063/1.2736697  doi: 10.1063/1.2736697

    12. [12]

      Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228. doi: 10.1021/jz1002132  doi: 10.1021/jz1002132

    13. [13]

      Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577  doi: 10.1021/ct1004577

    14. [14]

      Fias, S.; Boisdenghien, Z.; Stuyver, T.; Audiffred, M.; Merino, G.; Geerlings, P.; De Proft, F. J. Phys. Chem. A 2013, 117, 3556. doi: 10.1021/jp401760j  doi: 10.1021/jp401760j

    15. [15]

      Fias, S.; Geerlings, P.; Ayers, P.; De Proft, F. Phys. Chem. Chem. Phys. 2013, 15, 2882. doi: 10.1039/c2cp43612d  doi: 10.1039/c2cp43612d

    16. [16]

      Boisdenghien, Z.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. J. Chem. Theory Comp. 2013, 9, 1007. doi: 10.1021/ct300861r  doi: 10.1021/ct300861r

    17. [17]

      Yang, W.; Cohen, A. J.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2012, 136, 144110. doi: 10.1063/1.3701562  doi: 10.1063/1.3701562

    18. [18]

      Boisenghien, Z.; Fias, S.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. Phys. Chem. Chem. Phys. 2014, 16, 14614. doi: 10.1039/c4cp01331j  doi: 10.1039/c4cp01331j

    19. [19]

      Fias, S.; Boisdenghien, Z.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2014, 141, 184107. doi: 10.1063/1.4900513  doi: 10.1063/1.4900513

    20. [20]

      Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j  doi: 10.1039/c3cs60456j

    21. [21]

      Geerlings, P.; Boisdenghien, Z.; De Proft, F.; Fias, S. Theor. Chem. Acc. 2016, 135, 213. doi: 10.1007/s00214-016-1967-9  doi: 10.1007/s00214-016-1967-9

    22. [22]

      Stuyver, T.; Fias, S.; De Proft, F.; Fowler, P.; Geerlings, P. J. Chem. Phys. 2015, 142, 094103. doi: 10.1063/1.4913415  doi: 10.1063/1.4913415

    23. [23]

      Nalewajski, R. F.; Parr, R. G. J. Chem. Phys. 1982, 77, 399. doi: 10.1063/1.443620  doi: 10.1063/1.443620

    24. [24]

      Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034  doi: 10.1063/1.454034

    25. [25]

      Senet, P. J. Chem. Phys. 1996, 105, 6471. doi: 10.1063/1.472498  doi: 10.1063/1.472498

    26. [26]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007. doi: 10.1021/ja002966g  doi: 10.1021/ja002966g

    27. [27]

      Ayers, P. W. Theor. Chem. Acc. 2001, 106, 271. doi: 10.1007/PL00012385  doi: 10.1007/PL00012385

    28. [28]

      Liu, S.; Li, T.; Ayers, P. W. J. Chem. Phys. 2009, 131, 114106. doi: 10.1063/1.3231687  doi: 10.1063/1.3231687

    29. [29]

      Yang, W.; Parr, R. Proc. Natl. Acad. Sci. USA 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723  doi: 10.1073/pnas.82.20.6723

    30. [30]

      Mendez, F.; Gazquez, J. L. J. Am. Chem. Soc. 1994, 116, 9298. doi: 10.1021/ja00099a055  doi: 10.1021/ja00099a055

    31. [31]

      Damoun, S.; Van de Woude, G.; Mendez, F.; Geerlings, P. J. Phys. Chem. 1997, 101, 886. doi: 10.1021/jp9611840  doi: 10.1021/jp9611840

    32. [32]

      Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi: 10.1002/1097-461X(2000)80:2 < 227::AID-QUA17 > 3.3.CO; 2-E  doi: 10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.3.CO;2-E

    33. [33]

      Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039  doi: 10.1016/j.cplett.2016.07.039

    34. [34]

      Kohn, W. Phys. Rev. Lett. 1996, 76, 3168. doi: 10.1103/PhysRevLett.76.3168  doi: 10.1103/PhysRevLett.76.3168

    35. [35]

      Prodan, E.; Kohn, W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635. doi: 10.1073/pnas.0505436102  doi: 10.1073/pnas.0505436102

    36. [36]

      Fias, S.; Heidar-Zadeh, F.; Geerlings, P.; Ayers, P. W. Proc. Natl. Acad. Sci. USA 2017, 114, 11633. doi: 10.1073/pnas.1615053114  doi: 10.1073/pnas.1615053114

    37. [37]

      Berkowitz, M.; Ghosh, S. K.; Parr, R. J. Am. Chem. Soc. 1985, 107, 6811. doi: 10.1021/ja00310a011  doi: 10.1021/ja00310a011

    38. [38]

      Ghosh, S. K.; Berkowitz, M. J. Chem. Phys. 1985, 83, 2976. doi: 10.1063/1.449846  doi: 10.1063/1.449846

    39. [39]

      Ghosh, S. K. Chem. Phys. Lett. 1990, 172, 77. doi: 10.1016/0009-2614(90)87220-L  doi: 10.1016/0009-2614(90)87220-L

    40. [40]

      Harbola, M. K.; Chattaraj, P. K.; Parr, R. G. Isr. J. Chem. 1991, 31, 395.  doi: 10.1002/ijch.v31.4

    41. [41]

      Langenaeker, W.; De Proft, F.; Geerlings, P. J. Phys. Chem. 1995, 99, 6424. doi: 10.1021/j100017a022  doi: 10.1021/j100017a022

    42. [42]

      Chamorro, E.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2005, 123, 154104. doi: 10.1063/1.2072907  doi: 10.1063/1.2072907

    43. [43]

      Torrent-Sucarrat, M.; Salvador, P.; Sola, M.; Geerlings, P. J. Comp. Chem. 2007, 28, 574. doi: 10.1002/jcc.20535  doi: 10.1002/jcc.20535

    44. [44]

      Chattaraj, P.; Roy, D. R.; Geerlings, P.; Torrent-Sucarrat, M. Theor. Chem. Acc. 2007, 118, 923. doi: 10.1007/s00214-007-0373-8  doi: 10.1007/s00214-007-0373-8

    45. [45]

      Polanco-Ramirez, C. A.; Franco-Perez, M.; Carmona-Espindola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/c7cp00691h  doi: 10.1039/c7cp00691h

    46. [46]

      Liu, S.; Parr, R. G. J. Chem. Phys. 1997, 106, 5578. doi: 10.1063/1.473580  doi: 10.1063/1.473580

    47. [47]

      Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243. doi: 10.1002/qua.560240302  doi: 10.1002/qua.560240302

    48. [48]

      Eschrig, H. The Fundamentals of Density Functional Theory; Teubner: Stuttgart-Leipzig, Germany, 1996.
       

    49. [49]

      Kvaal, S.; Ekstrom, U.; Teale, A. M.; Helgaker, T. J. Chem. Phys. 2014, 140, 18A518. doi: 10.1063/1.4867005  doi: 10.1063/1.4867005

    50. [50]

      Perdew, J.; Parr, R.; Levy, M.; Balduz, J. L. J. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    51. [51]

      Fias, S. ; Geerlings, P. ; De Proft, F. ; Ayers, P. W. in preparation.

    52. [52]

      Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028  doi: 10.1073/pnas.81.24.8028

    53. [53]

      Nagy, A.; Parr, R. G. Proc. Indian Acad. Sci. 1994, 106, 217.
       

    54. [54]

      Nagy, A.; Parr, R. G. J. Mol. Struct. THEOCHEM 2000, 501–502, 101. doi: 10.1016/S0166-1280[99]00418-2  doi: 10.1016/S0166-1280[99]00418-2

    55. [55]

      Nagy, A. Int. J. Quantum Chem. 2017, 117, e25396. doi: 10.1002/qua.25396  doi: 10.1002/qua.25396

    56. [56]

      Callen, H. B. Thermodynamics and an Introduction to Thermostatistics; John Wiley: New York, NY, USA, 1985.
       

    57. [57]

      Prigogine, I.; Defay, R. Chemical Thermodynamics; Longman: London, UK, 1954.
       

    58. [58]

      Berry, R. S.; Rice, S. A.; Ross, J. Physical Chemistry; Wiley: New York, NY, USA, 1980.

    59. [59]

      Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.; Ayers, P. W. J. Chem. Phys. 2009, 130, 244105. doi: 10.1063/1.3151599  doi: 10.1063/1.3151599

    60. [60]

      Ayers, P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513  doi: 10.1103/PhysRevA.73.012513

    61. [61]

      Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    62. [62]

      Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539  doi: 10.1063/1.4932539

  • 加载中
    1. [1]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    2. [2]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    7. [7]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    8. [8]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    9. [9]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    10. [10]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    11. [11]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    12. [12]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    13. [13]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    14. [14]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    15. [15]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    16. [16]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    17. [17]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    20. [20]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

Metrics
  • PDF Downloads(10)
  • Abstract views(184)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return