Citation: YUAN Mingming, LI Difan, ZHAO Xiuge, MA Wenbao, KONG Kang, NI Wenxiu, GU Qingwen, HOU Zhenshan. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 886-895. doi: 10.3866/PKU.WHXB201711151 shu

Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst

  • Corresponding author: HOU Zhenshan, houzhenshan@ecust.edu.cn
  • Received Date: 27 October 2017
    Revised Date: 10 November 2017
    Accepted Date: 10 November 2017
    Available Online: 15 August 2017

    Fund Project: the Innovation Program of Shanghai Municipal Education Commission, China 15ZZ031the National Natural Science Foundation of China 21373082the National Natural Science Foundation of China 21773061The project was supported by the National Natural Science Foundation of China (21373082, 21773061) and the Innovation Program of Shanghai Municipal Education Commission, China (15ZZ031)

  • The Keggin type heteropolyacids (HPAs) have attracted increasing attention due to their strong Bronsted acidity and excellent redox properties, which could play an important role in accelerating the conversion of bio-derived molecules. In this work, heteropolyacid (HPA, H4PMo11VO40) encapsulated by silica was synthesized by a sol-gel method and a sequential silylation technique (HPA@SiO2-N2-S). The as-synthesized material was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The FT-IR spectra show that the HPA anions preserved their Keggin structure when incorporated into the catalyst. The XRD patterns show that HPA molecules are uniformly dispersed within the silica network. The SEM and TEM images confirm that the catalyst was composed of spherical nanometer-sized particles. The porous properties of the catalysts measured by the N2 adsorption-desorption isotherms indicate that the Brunauer, Emmett and Teller (BET) surface area of pure SiO2 was 287 m2·g-1, but upon encapsulation of HPA into the silica matrix, a lower surface area (245 m2·g-1) was measured for the resulting material. In addition, the pore diameter was reduced after silylation. Furthermore, the hydrophobicity of the catalysts was investigated by the measurement of contact angle (CA) with water. The SiO2 and SiO2/HPA catalysts were completely hydrophilic and the contact angle was close to 0°. However, the contact angle of the silylated catalyst was determined to be 137°, indicating that the silylation procedure significantly increased the hydrophobicity of the catalyst. The as-prepared catalysts were also used as heterogeneous catalysts for the selective oxidation of glycerol. The prepared material exhibited excellent catalytic activity towards glycerol oxidation, in which the glycerol can be selectively transformed into formic acid (ca. 70% selectivity) and glycolic acid (ca. 27% selectivity) using H2O2 as an oxidant under mild reaction conditions. The effect of the silylation procedure on the recyclability of catalyst was also investigated in this work. The characterizations described above indicated that silylation procedure can significantly increase the hydrophobicity and limit the pore sizes, resulting in high leach-resistance towards HPA, thus improving the recyclability of the silica-encapsulated HPA catalyst, as compared to the SiO2/HPA catalyst prepared with the conventional impregnation method. Furthermore, the conversion in the second catalytic run is even higher than that of the initial run, which is likely because more active sites are exposed after the first run. The catalyst can be reused for at least five cycles without any leaching of HPA. The spent catalyst did not undergo structural changes, as revealed by FT-IR, XRD, and SEM characterization. Moreover, it was found that the strong Bronsted acid additives played a crucial role in the catalytic oxidation of glycerol.
  • 加载中
    1. [1]

      Deuss, P. J.; Scott, M.; Tran, F.; Westwood, N. J.; Vries, J. G.; Barta, K. J. Am. Chem. Soc. 2015, 137 (23), 7456. doi: 10.1021/jacs.5b03693  doi: 10.1021/jacs.5b03693

    2. [2]

      Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem. Int. Ed. 2007, 46 (38), 7164. doi: 10.1002/anie.200604274  doi: 10.1002/anie.200604274

    3. [3]

      Xu, S.; Zhou, P.; Zhang, Z.; Yang, C.; Zhang, B.; Deng, K.; Bottle, S.; Zhu, H. J. Am. Chem. Soc. 2017, 139 (41), 14775. doi: 10.1021/jacs.7b08861  doi: 10.1021/jacs.7b08861

    4. [4]

      Lange, J, P. Angew. Chem. Int. Ed. 2015, 54 (45), 13186. doi: 10.1002/anie.201503595  doi: 10.1002/anie.201503595

    5. [5]

      Zhu, S. H.; Wang, J. G.; Fan, W. B. Acta Phys. -Chim. Sin. 2016, 32 (1), 85.  doi: 10.3866/PKU.WHXB201511061

    6. [6]

      Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12(4), 539. doi: 10.1039/b922014c  doi: 10.1039/b922014c

    7. [7]

      Brandner, A.; Lehnert, K.; Bienholz, A.; Lucas, M.; Claus, P. Top. Catal. 2009, 52 (3), 278. doi: 10.1007/s11244-008-9164-2  doi: 10.1007/s11244-008-9164-2

    8. [8]

      Gallezot, P. Chem. Soc. Rev. 2012, 41 (4), 1538. doi: 10.1039/c1cs15147a  doi: 10.1039/c1cs15147a

    9. [9]

      Loges, B.; Boddien, A.; Junge, H.; Beller, M. Angew. Chem. Int. Ed. 2008, 47 (21), 3962. doi: 10.1002/anie.200705972  doi: 10.1002/anie.200705972

    10. [10]

      Gilkey, M. J.; Xu, B. J. ACS Catal. 2016, 6 (3), 1420. doi: 10.1021/acscatal.5b02171  doi: 10.1021/acscatal.5b02171

    11. [11]

      Boddien, A.; Mellmann, D.; Gaertner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333 (6050), 1733. doi: 10.1126/science.1206613  doi: 10.1126/science.1206613

    12. [12]

      Yu, W. Y.; Mullen, G. M.; Flaherty, D. W.; Mullins, C. B. J. Am. Chem. Soc. 2014, 136 (31), 11070. doi: 10.1021/ja505192v  doi: 10.1021/ja505192v

    13. [13]

      Barnard, J. H.; Wang, C.; Berry, N. G.; Xiao, J. Chem. Sci. 2013, 4 (3), 1234. doi: 10.1039/c2sc21923a  doi: 10.1039/c2sc21923a

    14. [14]

      Tsurusaki, A.; Murata, K.; Onishi, N.; Sordakis, K.; Laurenczy, G.; Himeda, Y. ACS Catal. 2017, 7 (2), 1123. doi: 10.1021/acscatal.6b03194  doi: 10.1021/acscatal.6b03194

    15. [15]

      Villa, A.; Dimitratos, N.; Chan-Thaw, C. E.; Hammond, C.; Prati, L.; Hutchings, G. J. Acc. Chem. Res. 2015, 48 (5), 1403. doi: 10.1021/ar500426g  doi: 10.1021/ar500426g

    16. [16]

      Dodekatos, G.; Tüysüz, H. ChemCatChem. 2017, 9 (4), 610. doi: 10.1002/cctc.201601219  doi: 10.1002/cctc.201601219

    17. [17]

      D'Agostino, C.; Brett, G.; Divitini, G.; Ducati, C.; Hutchings, G. J.; Mantle, M. D.; F. Gladden, L. F. ACS Catal. 2017, 7 (7), 4235. doi: 10.1021/acscatal.7b01255  doi: 10.1021/acscatal.7b01255

    18. [18]

      Tsuji, A.; Rao, K. T.; Nishimura, S.; Takagaki, A.; Ebitani, K. ChemSusChem2011, 4 (4), 542. doi: 10.1002/cssc.201000359  doi: 10.1002/cssc.201000359

    19. [19]

      Rodrigues, E. G.; Pereira, M. F. R.; Chen, X.; Delgado, J. J.; rf o, J. J. M. Ind. Eng. Chem. Res. 2013, 52 (49), 17390. doi: 10.1021/ie402331u  doi: 10.1021/ie402331u

    20. [20]

      Sankar, M.; Dimitratos, N.; Knight, D. W.; Carley, A. F.; Tiruvalam, R.; Kiely, C. J.; Thomas, D.; Hutchings, G. J. ChemSusChem. 2009, 2 (12), 1145. doi: 10.1002/cssc.200900133  doi: 10.1002/cssc.200900133

    21. [21]

      Davis, S. E.; Ide, M. S.; Davis, R. J. Green Chem. 2013, 15 (1), 17. doi: 10.1039/c2gc36441g  doi: 10.1039/c2gc36441g

    22. [22]

      Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi: 10.1002/anie.200503779  doi: 10.1002/anie.200503779

    23. [23]

      Wang, S. S; Popovic, Z.; Wu, H. H; Liu, Y. ChemCatChem. 2011, 3 (7), 1208. doi: 10.1002/cctc.201000401  doi: 10.1002/cctc.201000401

    24. [24]

      Sarkar, B.; Pendem, C.; Konathala, L. N. S.; Tiwari, R.; Sasaki, T.; Bal, R. Chem. Commun. 2014, 50 (68), 9707. doi: 10.1039/c4cc03842h  doi: 10.1039/c4cc03842h

    25. [25]

      Faroppa, M. L.; Musci, J. J.; Chiosso, M. E.; Caggiano, C. G.; Bideberripe, H. P.; Fierro, J. L. G.; Siri, G. J.; Casella, M. L. Chin. J. Catal. 2016, 37 (11), 1982. doi: 10.1016/S1872-2067(16)62531-7  doi: 10.1016/S1872-2067(16)62531-7

    26. [26]

      Corrado Crotti, C.; Farnetti, E. J. Mol. Catal. A-Chem. 2015, 396, 353. doi: 10.1016/j.molcata.2014.10.021  doi: 10.1016/j.molcata.2014.10.021

    27. [27]

      Niu, M.; Hou, Y.; Ren, S.; Wu, W.; Marsh, K. N. Green Chem. 2015, 17 (1), 453. doi:10.1039/C4GC01440E  doi: 10.1039/C4GC01440E

    28. [28]

      Huang, Y. B.; Fu, Y. Green Chem. 2013, 15 (5), 1095. doi: 10.1039/C3GC40136G  doi: 10.1039/C3GC40136G

    29. [29]

      Lan, J. H.; Lin, J. C.; Chen, Z. C.; Yin, G. C. ACS Catal. 2015, 5 (4), 2035. doi: 10.1021/cs501776n  doi: 10.1021/cs501776n

    30. [30]

      Lachkar, D.; Vilona, D.; Dumont, E.; Lelli, M.; Lacote, E. Angew. Chem. Int. Ed. 2016, 55 (20), 5961. doi: 10.1002/anie.201510954  doi: 10.1002/anie.201510954

    31. [31]

      Ma, Q.; Tong, J. H.; Su, L. D.; Wang, W. H.; Ma, W. M.; Bo, L. L. Acta Phys. -Chim. Sin. 2016, 32 (12), 2961.  doi: 10.3866/PKU.WHXB201609181

    32. [32]

      Okuhara, T. Chem. Rev. 2002, 102 (10), 3641. doi: 10.1021/cr0103569  doi: 10.1021/cr0103569

    33. [33]

      Lu, T.; Niu, M.; Hou, Y.; Wu, W.; Ren, S.; Yang, F. Green Chem.2016, 18 (17), 4725. doi: 10.1039/c6gc01271j  doi: 10.1039/c6gc01271j

    34. [34]

      George, B.; Tsigdinos, A.; Hallada, C. J. Inorg. Chem. 1968, 7 (3), 437. doi: 10.1021/ic50061a009  doi: 10.1021/ic50061a009

    35. [35]

      Zhao, X. S.; Lu, G. Q.; Whittaker, A. K.; Millar, G. J.; Zhu, H. Y. J. Phys. Chem. B. 1997, 101, 6525. doi: 10.1021/jp971366  doi: 10.1021/jp971366

    36. [36]

      Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U. Acc. Chem. Res. 1998, 31 (8), 485. doi: 10.1021/ar9700163  doi: 10.1021/ar9700163

    37. [37]

      Jing, L.; Shi, J.; Zhang, F.; Zhong, Y. J.; Zhu, W. D. Ind. Eng. Chem. Res. 2013, 52 (30), 10095. doi: 10.1021/ie4007112  doi: 10.1021/ie4007112

    38. [38]

      Dippong, T.; Leveib, E. A.; Cadarb, O.; Mesarosc, A.; Borodid, G. J. Anal. Appl. Pyrol. 2017, 125, 169. doi: 10.1016/j.jaap.2017.04.005  doi: 10.1016/j.jaap.2017.04.005

    39. [39]

      Capel-Sanchez, M. C.; Barrio, L.; Campos-Martin, J. M.; Fierro, J. L. G. J. Colloid Interface Sci. 2004, 277 (1), 146. doi: 10.1016/j.jcis.2004.04.055  doi: 10.1016/j.jcis.2004.04.055

    40. [40]

      Jing, F.; Katryniok, B.; Dumeignil, F.; Bordes-Richard, E.; Paul, S. Catal. Sci. Technol. 2014, 4 (9), 2938. doi: 10.1039/c4cy00518j  doi: 10.1039/c4cy00518j

    41. [41]

      Feng, L.; Zhang, Y, N.; Xi, J. M.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Langmuir 2008, 24 (8), 4114. doi: 10.1021/la703821h  doi: 10.1021/la703821h

    42. [42]

      Feng, X. Q.; Gao, X. F.; Wu, Z. N.; Jiang, L.; Zheng, Q. S. Langmuir2007, 23 (9), 4892. doi: 10.1021/la063039b  doi: 10.1021/la063039b

    43. [43]

      Viswanadham, B.; Jhansi, P.; Chary, K. V. R.; Friedrich, H. B.; Singh, S. Catal. Lett. 2016, 146 (2), 364. doi: 10.1007/s10562-015-1646-9  doi: 10.1007/s10562-015-1646-9

    44. [44]

      Zhao, K. Y.; Wang, X. H.; Chen, T.; Wu, H.; Li, J. G.; Yang, B. X.; Li, D. Y.; Wei, J. F. Ind. Eng. Chem. Res. 2017, 56 (9), 2549. doi: 10.1021/acs.iecr.6b03015  doi: 10.1021/acs.iecr.6b03015

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    3. [3]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    4. [4]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    5. [5]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    6. [6]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    11. [11]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    12. [12]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    13. [13]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    16. [16]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    17. [17]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    18. [18]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(11)
  • Abstract views(247)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return