Citation: NARAYANAM Nagaraju, CHINTAKRINDA Kalpana, FANG Weihui, ZHANG Lei, ZHANG Jian. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 781-785. doi: 10.3866/PKU.WHXB201711131 shu

Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis

  • Corresponding author: ZHANG Lei, LZhang@fjirsm.ac.cn
  • Received Date: 17 October 2017
    Revised Date: 6 November 2017
    Accepted Date: 7 November 2017
    Available Online: 13 July 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21473202, 21673238) and Natural Science Foundation of Fujian Province, China (2017J06009)the National Natural Science Foundation of China 21673238Natural Science Foundation of Fujian Province, China 2017J06009the National Natural Science Foundation of China 21473202

  • Atomically precise nanoclusters form an important class of functional materials that have recently attracted research interest for their unique properties and easily tunable surface functionalities. Core-shell nanomaterials with precise structural information can be produced to better understand the structure–property relationships for different applications. Polyoxo-titanium clusters (PTCs) are such a kind of nanomaterial for different functional applications in catalysis, photovoltaics, ceramics, etc. However, the high bandgap of semiconductive PTCs is the limiting factor in their practical solar application in the visible region of sunlight. The development of PTCs with different surface-bound ligands is an emerging area of research in the design and synthesis of core-shell nanoclusters with reduced bandgaps. It has been extensively reported that the polynuclear growth of PTCs requires molecular-level water supply in reactions. Moreover, it is important to identify more environment-friendly synthetic methods. Deep eutectic-solvothermal (DES) synthesis is an emerging green method for the synthesis of different crystalline materials. The hygroscopic nature of DES should enhance the provision of water during polynuclear growth of nanoclusters. Hence, we chose to synthesize different kinds of PTCs using DES as solvent. Two nanoclusters, Zr-oxo (PTC-65) and Zr/Ti-oxo (PTC-66) clusters having surface-bound 1, 10-phenanthroline (1, 10-phn) and phenol ligands, were successfully synthesized using this approach; 1, 10-phn was employed as the precursor in the synthetic reaction, and phenol was not employed directly in the chemical reaction, but was supplied from the DES solvent used in the reaction. In the presence of chromophoric ligands, 1, 10-phn and phenol are believed to enhance the light absorption properties of the resulting functional nanomaterials. Their crystal structure revealed that they form core-shell mimics with Zr-oxo and Ti/Zr-oxo core units having surface-bound shell ligands. Based on their different structural characteristics, photocatalytic hydrogen evolution studies were performed on these two functional materials using an aqueous solution of H2O (50 mL)/triethanol amine (10 mL). Interestingly, PTC-65 formed a turbid solution, whereas PTC-66 formed a clear solution. The possible reasons for their different dispersion behaviors are widely discussed, with emphasis on their structure–property relationships. This study provides a potential tool for the homogenization of Ti-O materials to improve their photocatalytic activities. Moreover, the success of our work confirms that deep eutectic-solvothermal synthesis can be an effective method for cluster preparation. Many other interesting polynuclear complexes like polyoxometalates, chalcogenides, and noble-metal clusters could be obtained by this synthetic methodology.
  • 加载中
    1. [1]

      Indranath, C.; Thalappil, P. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769  doi: 10.1021/acs.chemrev.6b00769

    2. [2]

      Goswami, N.; Zheng, K.; Xie, J. Nanoscale 2014, 6, 13328. doi: 10.1039/C4NR04561K  doi: 10.1039/C4NR04561K

    3. [3]

      Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Chem. Asian J. 2013, 8, 858. doi: 10.1002/asia.201201236  doi: 10.1002/asia.201201236

    4. [4]

      Zhou, Y.; Li, Z. M.; Zheng, K.; Li, G. Acta Phys. -Chim. Sin. 2018, 34(7), 786.  doi: 10.3866/PKU.WHXB201709292

    5. [5]

      Fang, J.; Zhang, B.; Yao, Q.; Yang, Y.; Xie, J.; Yan, N. Coord. Chem. Rev. 2016, 322, 1. doi: 10.1016/j.ccr.2016.05.003  doi: 10.1016/j.ccr.2016.05.003

    6. [6]

      Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. K. Acta Phys. -Chim. Sin. 2018, 34(7), 792.  doi: 10.3866/PKU.WHXB201710091

    7. [7]

      Sun, G. D.; Kang, X.; Jin, S.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Acta Phys. -Chim. Sin. 2018, 34(7), 799.  doi: 10.3866/PKU.WHXB201710124

    8. [8]

      Chaudhuri, R. G.; Paria, S. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n  doi: 10.1021/cr100449n

    9. [9]

      Xiao, P. W.; Zhao, L, Sui, Z. Y.; Han, B. H. Langmuir 2017, 33, 6038. doi: 10.1021/acs.langmuir.7b00331  doi: 10.1021/acs.langmuir.7b00331

    10. [10]

      Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, 34(7), 805. doi: 10.3866/PKU.WHXB201710271  doi: 10.3866/PKU.WHXB201710271

    11. [11]

      Li, N.; Matthews, P. D.; Luob, H. K.; Wright, D. S. Chem. Commun. 2016, 52, 11180. doi: 10.1039/C6CC03788G  doi: 10.1039/C6CC03788G

    12. [12]

      Snoeberger, R. C., Ⅲ; Young, K. J.; Tang, J.; Allen, L. J.; Crabtree, R. H.; Brudvig, G. W.; Coppens, P.; Batista, V. S.; Benedict, J. B. J. Am. Chem. Soc. 2012, 134, 8911. doi: 10.1021/ja301238t  doi: 10.1021/ja301238t

    13. [13]

      Fang, W. H.; Wang, J. F.; Zhang, L.; Zhang, J. Chem. Mater. 2017, 29, 2681. doi: 10.1021/acs.chemmater.7b00324  doi: 10.1021/acs.chemmater.7b00324

    14. [14]

      Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Nano Res. 2015, 8, 4061. doi: 10.1007/s12274-015-0917-5  doi: 10.1007/s12274-015-0917-5

    15. [15]

      Coppens, P.; Chen, Y.; Trzop, E. Chem. Rev. 2014, 114, 9645. doi: 10.1021/cr400724e  doi: 10.1021/cr400724e

    16. [16]

      Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 5160. doi: 10.1002/anie.201510455  doi: 10.1002/anie.201510455

    17. [17]

      Lv, Y.; Cheng, J.; Steiner, A.; Gan, L.; Wright, D. S. Angew. Chem. Int. Ed. 2014, 53, 1934. doi: 10.1002/anie.201307721  doi: 10.1002/anie.201307721

    18. [18]

      Sokolow, J. D.; Trzop, E.; Chen, Y.; Tang, J.; Allen, L. J.; Crabtree, R. H.; Benedict, J. B.; Coppens. P. J. Am. Chem. Soc. 2012, 134, 11695. doi: 10.1021/ja303692r  doi: 10.1021/ja303692r

    19. [19]

      Wagle, D. V.; Zhao, H.; Baker, G. A. Acc. Chem. Res. 2014, 7, 2299. doi: 10.1021/ar5000488  doi: 10.1021/ar5000488

    20. [20]

      Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E. Nature 2004, 430, 1012. doi: 10.1038/nature02860  doi: 10.1038/nature02860

    21. [21]

      Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/C2CS35178A  doi: 10.1039/C2CS35178A

    22. [22]

      Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p  doi: 10.1021/cr300162p

    23. [23]

      Zhang, J.; Wu, T.; Chen, S.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2009, 48, 3486. doi: 10.1002/anie.200900134  doi: 10.1002/anie.200900134

    24. [24]

      Wragg, D. S.; Slawin, A. M. Z.; Morris, R. E. Solid State Sci. 2009, 11, 411. doi: 10.1016/j.solidstatesciences.2008.09.008  doi: 10.1016/j.solidstatesciences.2008.09.008

    25. [25]

      Nagaraju, N.; Fang, W. H.; Kalpana, C.; Zhang, L.; Zhang, J. Chem. Commun. 2017, 53, 8078. doi: 10.1039/c7cc04388k  doi: 10.1039/c7cc04388k

    26. [26]

      Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112. doi: 10.1107/S0108767307043930  doi: 10.1107/S0108767307043930

    27. [27]

      Sheldrick, G. M. SHELXL-2014, University of Gottingen, Germany, 2014.

    28. [28]

      Kickelbick, G.; Wiede, P.; Schubert, U. Inorg. Chim. Acta 1999, 284, 1. doi: 10.1016/S0020-1693(98)00251-5  doi: 10.1016/S0020-1693(98)00251-5

    29. [29]

      Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, Z. J. Am. Chem. Soc. 2016, 138, 2556. doi: 10.1021/jacs.6b00613  doi: 10.1021/jacs.6b00613

    30. [30]

      Zhang, G.; Liu, C.; Long, D. L.; Cronin, L.; Tung, C. H.; Wang, Y. J. Am. Chem. Soc. 2016, 138, 11097. doi: 10.1021/ jacs.6b06290  doi: 10.1021/jacs.6b06290

  • 加载中
    1. [1]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    2. [2]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    3. [3]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    4. [4]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    5. [5]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    6. [6]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    7. [7]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    8. [8]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    11. [11]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    12. [12]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    13. [13]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    19. [19]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(8)
  • Abstract views(655)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return