Citation: AYERS Paul W., LEVY Mel. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 625-630. doi: 10.3866/PKU.WHXB201711071 shu

Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number

  • Corresponding author: AYERS Paul W., ayers@mcmaster.ca LEVY Mel, mlevy@tulane.edu
  • Received Date: 25 September 2017
    Revised Date: 2 November 2017
    Accepted Date: 2 November 2017
    Available Online: 7 June 2017

  • By extending the Levy wavefunction constrained search to Fock Space, one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons. For pure-state v-representable densities, the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble. In other cases, the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional. One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states (i.e., those that are not ground-state v-representable) are the stationary points of the Fock-space functional. However, a potential disadvantage of the Fock-space constrained search functional is that it is not convex.
  • 加载中
    1. [1]

      Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. doi: 10.1103/PhysRev.136.B864  doi: 10.1103/PhysRev.136.B864

    2. [2]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    3. [3]

      Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974. doi: 10.1021/jp960669l  doi: 10.1021/jp960669l

    4. [4]

      Kohn, W. Rev. Mod. Phys. 1999, 71, 1253. doi: 10.1103/RevModPhys.71.1253  doi: 10.1103/RevModPhys.71.1253

    5. [5]

      Levy, M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062. doi: 10.1073/pnas.76.12.6062  doi: 10.1073/pnas.76.12.6062

    6. [6]

      Levy, M.; Perdew, J. P. The Constrained Search Formulation of Density Functional Theory. In Density Functional Methods in Physics, NATO ASI Series (Series B: Physics), Vol. 123; Dreizler, R. M., da Providência, J. Eds.; Springer: Boston, MA, USA. doi: 10.1007/978-1-4757-0818-9_2  doi: 10.1007/978-1-4757-0818-9_2

    7. [7]

      Perdew, J. P.; Levy, M. Phys. Rev. B 1985, 31, 6264. doi: 10.1103/PhysRevB.31.6264  doi: 10.1103/PhysRevB.31.6264

    8. [8]

      Gorling, A. Phys. Rev. A 1996, 54, 3912. doi: 10.1103/PhysRevA.54.3912  doi: 10.1103/PhysRevA.54.3912

    9. [9]

      Gorling, A. Phys. Rev. A 1999, 59, 3359. doi: 10.1103/PhysRevA.59.3359  doi: 10.1103/PhysRevA.59.3359

    10. [10]

      Levy, M. In On Time-Independent Density-Functional Theories for Excited States, Proceedings of the 1st International Workshop Electron Correlation and Material Properties, 1999; pp. 299-308.

    11. [11]

      Levy, M.; Nagy, A. Phys. Rev. Lett. 1999, 83, 4361. doi: 10.1103/PhysRevLett.83.4361  doi: 10.1103/PhysRevLett.83.4361

    12. [12]

      Levy, M.; Nagy, A. Phys. Rev. A 1999, 59, 1687. doi: 10.1103/PhysRevA.59.1687  doi: 10.1103/PhysRevA.59.1687

    13. [13]

      Nagy, A.; Levy, M. Phys. Rev. A 2001, 63, 052502. doi: 10.1103/PhysRevA.63.052502  doi: 10.1103/PhysRevA.63.052502

    14. [14]

      Nagy, A.; Levy, M.; Ayers, P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 121.

    15. [15]

      Ayers, P. W.; Levy, M. Phys. Rev. A 2009, 80, 012508. doi: 10.1103/PhysRevA.80.012508  doi: 10.1103/PhysRevA.80.012508

    16. [16]

      Ayers, P. W.; Nagy, A.; Levy, M. Phys. Rev. A 2012, 85, 042518. doi: 10.1103/PhysRevA.85.042518  doi: 10.1103/PhysRevA.85.042518

    17. [17]

      Ayers, P. W.; Levy, M.; Nagy, A. J. Chem. Phys. 2015, 143 (19), 4. doi: 10.1063/1.4934963  doi: 10.1063/1.4934963

    18. [18]

      Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. Phys. Chem. A 2013, 117 (32), 7378. doi: 10.1021/jp401323d  doi: 10.1021/jp401323d

    19. [19]

      Glushkov, V. N.; Assfeld, X. J. Chem. Phys. 2010, 132, 204106. doi: 10.1063/1.3443777  doi: 10.1063/1.3443777

    20. [20]

      Glushkov, V. N.; Levy, M. J. Chem. Phys. 2007, 126, 174106. doi: 10.1063/1.2733657  doi: 10.1063/1.2733657

    21. [21]

      Miranda-Quintana, R. A.; Gonzalez, M. M. Int. J. Quantum Chem. 2013, 113 (22), 2478. doi: 10.1002/qua.24486  doi: 10.1002/qua.24486

    22. [22]

      Ayers, P. W. Variational Principles for Understanding Chemical Reactions. Ph.D. Dissertation, University of North Carolina: Chapel Hill, NV, USA, 2001.

    23. [23]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    24. [24]

      Zhang, Y. K.; Yang, W. T. Theor. Chem. Acc. 2000, 103, 346. doi: 10.1007/s002149900021  doi: 10.1007/s002149900021

    25. [25]

      Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/PhysRevLett.84.5172  doi: 10.1103/PhysRevLett.84.5172

    26. [26]

      Ayers, P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5  doi: 10.1007/s10910-006-9195-5

    27. [27]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    28. [28]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    29. [29]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Charge Density and Chemical Reactivity: A Unified View from Conceptual DFT. In Modern Charge Density Analysis; Gatti, C., Macchi, P. Eds.; Springer: New York, NY, USA, 2012; pp. 715-764.

    30. [30]

      De Proft, F.; Geerlings, P.; Ayers, P. W. The conceptual Density Functional Theory Perspective of Bonding. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Shaik, S., Frenking, G., Eds.; Wiley: Darmstadt, Germany, 2014; Vol. 1, pp. 233-270.

    31. [31]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
       

    32. [32]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    33. [33]

      Heidar-Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    34. [34]

      Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039  doi: 10.1016/j.cplett.2016.07.039

    35. [35]

      Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124  doi: 10.1063/1.3251124

    36. [36]

      Ayers, P. W.; Parr, R. G.; Pearson, R. G. J. Chem. Phys. 2006, 124, 194107. doi: 10.1063/1.2196882  doi: 10.1063/1.2196882

    37. [37]

      Chattaraj, P. K.; Ayers, P. W.; Melin, J. Phys. Chem. Chem. Phys. 2007, 9, 3853. doi: 10.1039/b705742c  doi: 10.1039/b705742c

    38. [38]

      Ayers, P. W. Faraday Discuss. 2007, 135, 161. doi: 10.1039/b606877d  doi: 10.1039/b606877d

    39. [39]

      Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2005, 123, 086101. doi: 10.1063/1.2011395  doi: 10.1063/1.2011395

    40. [40]

      Kutzelnigg, W. J. Chem. Phys. 1985, 82 (9), 4166. doi: 10.1063/1.448859  doi: 10.1063/1.448859

    41. [41]

      Kutzelnigg, W.; Koch, S. J. Chem. Phys. 1983, 79 (9), 4315. doi: 10.1063/1.446313  doi: 10.1063/1.446313

    42. [42]

      Kutzelnigg, W. J. Chem. Phys. 1982, 77 (6), 3081. doi: 10.1063/1.444231  doi: 10.1063/1.444231

    43. [43]

      Kutzelnigg, W. Quantum chemistry In Fock Space. In Aspects of Many-Body Effects in Molecules and Extended Systems; Mukherjee, D., Ed.; Springer-Verlag: Berlin, Germany, 1989; pp. 35-68.

    44. [44]

      Kutzelnigg, W. J. Chem. Phys. 1984, 80 (2), 822. doi: 10.1063/1.446736  doi: 10.1063/1.446736

    45. [45]

      Stone, M. H. Linear Transformations in Hilbert Space; American Mathematical Society: New York, NY, USA, 1932; Vol. 15.

    46. [46]

      Eschrig, H. The Fundamentals of Density Functional Theory. Eagle: Leipzig, Germany, 2003.

    47. [47]

      Eschrig, H. Phys. Rev. B 2010, 82, 205120. doi: 10.1103/PhysRevB.82.205120  doi: 10.1103/PhysRevB.82.205120

    48. [48]

      Malek, A. M.; Balawender, R. arXiv:1310.6918 2013.

    49. [49]

      Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142. 054104. doi: 10.1063/1.4906555  doi: 10.1063/1.4906555

    50. [50]

      Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L. Theor. Chem. Acc. 2016, 135 (8), 199. doi: 10.1007/s00214-016-1961-2  doi: 10.1007/s00214-016-1961-2

    51. [51]

      Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143 (24), 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    52. [52]

      Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143 (15), 154103. doi: 10.1063/1.4932539  doi: 10.1063/1.4932539

    53. [53]

      Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144 (24), 244112. doi: 10.1063/1.4953557  doi: 10.1063/1.4953557

    54. [54]

      Bochicchio, R. C.; Miranda-Quintana, R. A.; Rial, D. J. Chem. Phys. 2013, 139 (19), 191101. doi: 10.1063/1.4832495  doi: 10.1063/1.4832495

    55. [55]

      Franco-Perez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19 (18), 11588. doi: 10.1039/c7cp00224f  doi: 10.1039/c7cp00224f

    56. [56]

      Gyftopoulos, E. P.; Hatsopoulos, G. N. Proc. Natl. Acad. Sci. USA 1965, 60, 786.
       

    57. [57]

      Ayers, P. W.; Yang, W. Density Functional Theory. In Computational Medicinal Chemistry for Drug Discovery; Bultinck, P., de Winter, H., Langenaeker, W., Tollenaere, J. P. Eds.; Dekker: New York, NY, USA, 2003; pp. 571-616.

    58. [58]

      Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093  doi: 10.1007/s002149900093

    59. [59]

      Valone, S. M. J. Chem. Phys. 1980, 73, 4653. doi: 10.1063/1.440656  doi: 10.1063/1.440656

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    5. [5]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    9. [9]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    10. [10]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    11. [11]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    12. [12]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    13. [13]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    14. [14]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    15. [15]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    16. [16]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    17. [17]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    18. [18]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    19. [19]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    20. [20]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

Metrics
  • PDF Downloads(5)
  • Abstract views(183)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return