Thiolate-Protected Hollow Gold Nanospheres
- Corresponding author: GAO Yi, gaoyi@sinap.ac.cn
Citation: XU Wenwu, GAO Yi. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 770-775. doi: 10.3866/PKU.WHXB201711061
Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Acc. Chem. Res. 2008, 41, 1587. doi: 10.1021/ar800018v
doi: 10.1021/ar800018v
Dreaden, E. C.; Mackey, M. A.; Huang, X.; Kangy, B.; El-Sayed, M. A. Chem. Soc. Rev. 2010, 40, 3391. doi: 10.1039/C0CS00180E
doi: 10.1039/C0CS00180E
Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. Small 2011, 7, 169. doi: 10.1002/smll.201000134
doi: 10.1002/smll.201000134
Melancon, M. P.; Zhou, M.; Li, C. Acc. Chem. Res. 2011, 44, 947. doi: 10.1021/ar200022e
doi: 10.1021/ar200022e
Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740. doi: 10.1021/ar200022e
doi: 10.1021/ar200022e
Doane, T. L.; Burda, C. Chem. Soc. Rev. 20] 41, 2885. doi: 10.1039/C2CS15260F
doi: 10.1039/C2CS15260F
Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Ed. 2004, 43, 2678. doi: 10.1039/C2CS15260F
doi: 10.1039/C2CS15260F
Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2005, 127, 3698. doi: 10.1021/ja050435s
doi: 10.1021/ja050435s
Bulusu, S.; Li, X.; Wang, L. S.; Zeng, X. C. Proc. Natl. Acad. Sci. USA 2006, 103, 8326. doi: 10.1021/ja050435s
doi: 10.1021/ja050435s
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430. doi: 10.1126/science.1148624
doi: 10.1126/science.1148624
Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N. L.; Jin, R. Angew. Chem. Int. Ed. 2015, 54, 3140. doi: 10.1002/ange.201410161
doi: 10.1002/ange.201410161
Chen, S.; Wang, S.; Zhong, J.; Song, Y.; Zhang, J.; Sheng, H.; Pei, Y.; Zhu, M. Angew. Chem. Int. Ed. 2015, 54, 3145. doi: 10.1002/anie.201410295
doi: 10.1002/anie.201410295
Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11922. doi: 10.1021/ja506802n
doi: 10.1021/ja506802n
Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 18264. doi: 10.1021/ja409177s
doi: 10.1021/ja409177s
Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 14933. doi: 10.1021/ja507738e
doi: 10.1021/ja507738e
Das, A.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. Nanoscale 2014, 6, 6458. doi: 10.1039/C4NR01350F
doi: 10.1039/C4NR01350F
Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r
doi: 10.1021/ja801173r
Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754. doi: 10.1021/ja800561b
doi: 10.1021/ja800561b
Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011. doi: 10.1021/ja404058q
doi: 10.1021/ja404058q
Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 1482. doi: 10.1021/ja404058q
doi: 10.1021/ja404058q
Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. J. Am. Chem. Soc. 2014, 136, 5000. doi: 10.1021/ja412141j
doi: 10.1021/ja412141j
Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51, 13114. doi: 10.1002/ange.201207098
doi: 10.1002/ange.201207098
Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280. doi: 10.1002/ange.201207098
doi: 10.1002/ange.201207098
Tian, S.; Li, Y.; Li, M.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667. doi: 10.1038/ncomms9667
doi: 10.1038/ncomms9667
Zeng, C.; Chen, Y.; Liu, C.; Nobusada, K.; Rosi, N. L.; Jin, R. Sci. Adv. 2015, 1, e1500425. doi: 10.1126/sciadv.1500425
doi: 10.1126/sciadv.1500425
Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2015, 137, 10076. doi: 10.1021/jacs.5b05378
doi: 10.1021/jacs.5b05378
Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. J. Am. Chem. Soc. 2015, 137, 4610. doi: 10.1021/ja513152h
doi: 10.1021/ja513152h
Zeng, C.; Chen, Y.; Kirschbaum, K.; Appavoo, K.; Sfeir, M. Y.; Jin, R. Sci. Adv. 2015, 1, e1500045. doi: 10.1126/sciadv.1500045
doi: 10.1126/sciadv.1500045
Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K.; Jin, R. Science 2016, 354, 1580. doi: 10.1126/science.aak9750
doi: 10.1126/science.aak9750
Häkkinen, H.; Walter, M.; Gronbeck, H. J. Phys. Chem. B 2006, 110, 9927. doi: 10.1021/jp0619787
doi: 10.1021/jp0619787
Häkkinen, H. Nat. Chem. 2012, 4, 443. doi: 10.1021/jp0619787
doi: 10.1021/jp0619787
Pei, Y.; Zeng, X. C. Nanoscale 2012, 4, 4054. doi: 10.1039/C2NR30685A
doi: 10.1039/C2NR30685A
Jin, R. Nanoscale 2015, 7, 1549. doi: 10.1039/C4NR05794E
doi: 10.1039/C4NR05794E
Liu, C.; Pei, Y.; Sun, H.; Ma, J. J. Am. Chem. Soc. 2015, 137, 15809. doi: 10.1021/jacs.5b09466
doi: 10.1021/jacs.5b09466
Jiang, D.; Overbury, S. H.; Dai, S. J. Am. Chem. Soc. 2013, 135, 8786. doi: 10.1021/ja402680c
doi: 10.1021/ja402680c
Pei, Y.; Gao, Y.; Shao, N.; Zeng, X. C. J. Am. Chem. Soc. 2009, 131, 13619. doi: 10.1021/ja905359b
doi: 10.1021/ja905359b
Pei, Y.; Tang, J.; Tang, X.; Huang, Y.; Zeng, X. C. J. Phys. Chem. Lett. 2015, 6, 1390. doi: 10.1021/acs.jpclett.5b00364
doi: 10.1021/acs.jpclett.5b00364
Pei, Y.; Pal, R.; Liu, C.; Gao, Y.; Zhang, Z.; Zeng, X. C. J. Am. Chem. Soc. 2012, 134, 3015. doi: 10.1021/ja208559y
doi: 10.1021/ja208559y
Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. J. Am. Chem. Soc. 2008, 130, 3756. doi: 10.1021/ja800594p
doi: 10.1021/ja800594p
Pei, Y.; Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2008, 130, 7830. doi: 10.1021/ja802975b
doi: 10.1021/ja802975b
Malola, S.; Lehtovaara, L.; Knoppe, S.; Hu, K.; Palmer, R. E.; Bürgi, T.; Häkkinen, H. J. Am. Chem. Soc. 2012, 134, 19560. doi: 10.1021/ja309619n
doi: 10.1021/ja309619n
Pei, Y.; Lin, S. S.; Su, J.; Liu, C. J. Am. Chem. Soc. 2013, 135, 19060. doi: 10.1021/ja409788k
doi: 10.1021/ja409788k
Xu, W. W.; Gao, Y.; Zeng, X. C. Sci. Adv. 2015, 1, e1400211. doi: 10.1126/sciadv.1400211
doi: 10.1126/sciadv.1400211
Zhou, Y.; Li, Z. M.; Zheng, K.; Li, G. Acta Phys. -Chim. Sin. 2018, 34(7), 786.
doi: 10.3866/PKU.WHXB201709292
Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. Acta Phys. -Chim. Sin. 2018, 34(7), 792.
doi: 10.3866/PKU.WHXB201710091
Sun, G. D.; Kang, X.; Jin, S.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Acta Phys. -Chim. Sin. 2018, 34(7), 799.
doi: 10.3866/PKU.WHXB201710124
Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, 34(7), 805. doi: 10.3866/PKU.WHXB201710271
doi: 10.3866/PKU.WHXB201710271
Liu, M. H. Acta Phys. -Chim. Sin. 2018, 34(6), 553.
doi: 10.3866/PKU.WHXB201710301
Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. Nat. Commun. 2016, 7, 13574. doi: 10.1038/ncomms13574
doi: 10.1038/ncomms13574
Xu, W. W.; Zeng, X. C.; Gao, Y. Chem. Phys. Lett. 2017, 675, 35. doi: 10.1016/j.cplett.2017.03.001
doi: 10.1016/j.cplett.2017.03.001
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
doi: 10.1103/PhysRevLett.77.3865
Lee, C.; Yang, W.; Parr, R. G. Phys. Re v. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
doi: 10.1103/PhysRevB.37.785
Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
doi: 10.1063/1.448799
Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800
doi: 10.1063/1.448800
Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
doi: 10.1063/1.448975
Von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. doi: 10.1021/ja960582d
doi: 10.1021/ja960582d
Cheng, L.; Yuan, Y.; Zhang, X.; Yang, J. Angew. Chem. Int. Ed. 2013, 52, 9035. doi: 10.1002/anie.201302926
doi: 10.1002/anie.201302926
Xu, W. W.; Li, Y.; Gao, Y.; Zeng, X. C. Nanoscale 2016, 8, 7396. doi: 10.1039/C6NR00272B
doi: 10.1039/C6NR00272B
Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
doi: 10.1063/1.458452
Delley, B. J. Chem. Phys. 2003, 113, 7756. doi: 10.1063/1.1316015
doi: 10.1063/1.1316015
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Guiyang Zheng , Xuelian Kang , Haoran Ye , Wei Fan , Christian Sonne , Su Shiung Lam , Rock Keey Liew , Changlei Xia , Yang Shi , Shengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625