Citation: XU Wenwu, GAO Yi. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 770-775. doi: 10.3866/PKU.WHXB201711061 shu

Thiolate-Protected Hollow Gold Nanospheres

  • Corresponding author: GAO Yi, gaoyi@sinap.ac.cn
  • Received Date: 11 October 2017
    Revised Date: 1 November 2017
    Accepted Date: 2 November 2017
    Available Online: 6 July 2017

    Fund Project: the National Natural Science Foundation of China 21773287the National Natural Science Foundation of China 11504396The project was supported by the National Natural Science Foundation of China (11504396, 21773287)

  • We present the atomic structure of thiolate-protected hollow Au nanosphere (HAuNS), Au60(SR)20, with high symmetry and stability based on the grand unified model (GUM; Nat. Commun. 2016, 7, 13574) and density-functional theory (DFT) calculations. Using C20 fullerene (with Ih symmetry) as a template, 20 tetrahedral Au4 units were used to replace the C atoms of C20, and three Au atoms of each Au4 were fused with three neighboring Au4 units by sharing one Au atom to form an icosahedral Au50 fullerene cage as the inner core. Subsequently, the unfused Au atom in each Au4 was bonded with the [―RS―Au―SR―] staple to form the completely hollow Au60(SR)20 nanosphere. Therefore, the Au60(SR)20 is composed of an icosahedral Au50 fullerene hollow cage (constructed by fusing 20 tetrahedral Au4 units) with 10 [―RS―Au―SR―] staples, obeying the "divide and protect" rule. Each Au4 unit has 2e valence electrons, namely, the tetrahedral Au4(2e) elementary block in the grand unified model. The DFT calculations showed that this hollow Au60(SR)20 nanosphere had a large HOMO–LUMO (HOMO: the highest occupied molecular orbital; LUMO: the lowest unoccupied molecular orbital) gap (1.3 eV) and a negative nucleus-independent chemical shift (NICS) value (−5) at the center of the hollow cage, indicating its high chemical stability. Furthermore, the NICS values in the center of the tetrahedral Au4 units were much more negative than that in the center of the hollow cage, revealing that the overall stability of Au60(SR)20 likely stemmed from the local stability of each tetrahedral Au4 unit. The harmonic vibrational frequencies were all positive, suggesting that the HAuNS corresponded to the local minimum of the potential energy surface. In addition, the bilayer HAuNS was designed by fusing the tetrahedral Au4 layers, indicating the feasibility of tuning the thickness of the shell of HAuNS. In bilayer HAuNS, each tetrahedral Au4 unit in the first layer shared four Au atoms, while those in the second layer shared one Au atom. The other three Au atoms of each tetrahedral unit bonded with the SR groups, demonstrating that each tetrahedral Au4 unit has 2e valence electrons (namely the tetrahedral Au4(2e) elementary block in GUM). The HOMO-LUMO gap of the bilayer Au140(SH)60 nanosphere is 1.5 eV, indicating its chemical stability. The thicknesses of the shells in monolayer and bilayer HAuNS are about 0.2 and 0.4 nm, respectively. This process could be easily understood in terms of the local stabilities of the tetrahedral Au4(2e) elementary block in GUM. Finally, the design of larger HAuNS, Au180(SR)60, has also been presented. The HOMO-LUMO gap of Au180(SH)60 was 0.9 eV, which showed that it was also a stable HAuNS. This work provides a new strategy to controllably design the HAuNS.
  • 加载中
    1. [1]

      Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Acc. Chem. Res. 2008, 41, 1587. doi: 10.1021/ar800018v  doi: 10.1021/ar800018v

    2. [2]

      Dreaden, E. C.; Mackey, M. A.; Huang, X.; Kangy, B.; El-Sayed, M. A. Chem. Soc. Rev. 2010, 40, 3391. doi: 10.1039/C0CS00180E  doi: 10.1039/C0CS00180E

    3. [3]

      Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. Small 2011, 7, 169. doi: 10.1002/smll.201000134  doi: 10.1002/smll.201000134

    4. [4]

      Melancon, M. P.; Zhou, M.; Li, C. Acc. Chem. Res. 2011, 44, 947. doi: 10.1021/ar200022e  doi: 10.1021/ar200022e

    5. [5]

      Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740. doi: 10.1021/ar200022e  doi: 10.1021/ar200022e

    6. [6]

      Doane, T. L.; Burda, C. Chem. Soc. Rev. 20] 41, 2885. doi: 10.1039/C2CS15260F  doi: 10.1039/C2CS15260F

    7. [7]

      Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Ed. 2004, 43, 2678. doi: 10.1039/C2CS15260F  doi: 10.1039/C2CS15260F

    8. [8]

      Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2005, 127, 3698. doi: 10.1021/ja050435s  doi: 10.1021/ja050435s

    9. [9]

      Bulusu, S.; Li, X.; Wang, L. S.; Zeng, X. C. Proc. Natl. Acad. Sci. USA 2006, 103, 8326. doi: 10.1021/ja050435s  doi: 10.1021/ja050435s

    10. [10]

      Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430. doi: 10.1126/science.1148624  doi: 10.1126/science.1148624

    11. [11]

      Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N. L.; Jin, R. Angew. Chem. Int. Ed. 2015, 54, 3140. doi: 10.1002/ange.201410161  doi: 10.1002/ange.201410161

    12. [12]

      Chen, S.; Wang, S.; Zhong, J.; Song, Y.; Zhang, J.; Sheng, H.; Pei, Y.; Zhu, M. Angew. Chem. Int. Ed. 2015, 54, 3145. doi: 10.1002/anie.201410295  doi: 10.1002/anie.201410295

    13. [13]

      Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11922. doi: 10.1021/ja506802n  doi: 10.1021/ja506802n

    14. [14]

      Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 18264. doi: 10.1021/ja409177s  doi: 10.1021/ja409177s

    15. [15]

      Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 14933. doi: 10.1021/ja507738e  doi: 10.1021/ja507738e

    16. [16]

      Das, A.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. Nanoscale 2014, 6, 6458. doi: 10.1039/C4NR01350F  doi: 10.1039/C4NR01350F

    17. [17]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    18. [18]

      Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754. doi: 10.1021/ja800561b  doi: 10.1021/ja800561b

    19. [19]

      Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011. doi: 10.1021/ja404058q  doi: 10.1021/ja404058q

    20. [20]

      Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 1482. doi: 10.1021/ja404058q  doi: 10.1021/ja404058q

    21. [21]

      Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. J. Am. Chem. Soc. 2014, 136, 5000. doi: 10.1021/ja412141j  doi: 10.1021/ja412141j

    22. [22]

      Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51, 13114. doi: 10.1002/ange.201207098  doi: 10.1002/ange.201207098

    23. [23]

      Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280. doi: 10.1002/ange.201207098  doi: 10.1002/ange.201207098

    24. [24]

      Tian, S.; Li, Y.; Li, M.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667. doi: 10.1038/ncomms9667  doi: 10.1038/ncomms9667

    25. [25]

      Zeng, C.; Chen, Y.; Liu, C.; Nobusada, K.; Rosi, N. L.; Jin, R. Sci. Adv. 2015, 1, e1500425. doi: 10.1126/sciadv.1500425  doi: 10.1126/sciadv.1500425

    26. [26]

      Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2015, 137, 10076. doi: 10.1021/jacs.5b05378  doi: 10.1021/jacs.5b05378

    27. [27]

      Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. J. Am. Chem. Soc. 2015, 137, 4610. doi: 10.1021/ja513152h  doi: 10.1021/ja513152h

    28. [28]

      Zeng, C.; Chen, Y.; Kirschbaum, K.; Appavoo, K.; Sfeir, M. Y.; Jin, R. Sci. Adv. 2015, 1, e1500045. doi: 10.1126/sciadv.1500045  doi: 10.1126/sciadv.1500045

    29. [29]

      Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K.; Jin, R. Science 2016, 354, 1580. doi: 10.1126/science.aak9750  doi: 10.1126/science.aak9750

    30. [30]

      Häkkinen, H.; Walter, M.; Gronbeck, H. J. Phys. Chem. B 2006, 110, 9927. doi: 10.1021/jp0619787  doi: 10.1021/jp0619787

    31. [31]

      Häkkinen, H. Nat. Chem. 2012, 4, 443. doi: 10.1021/jp0619787  doi: 10.1021/jp0619787

    32. [32]

      Pei, Y.; Zeng, X. C. Nanoscale 2012, 4, 4054. doi: 10.1039/C2NR30685A  doi: 10.1039/C2NR30685A

    33. [33]

      Jin, R. Nanoscale 2015, 7, 1549. doi: 10.1039/C4NR05794E  doi: 10.1039/C4NR05794E

    34. [34]

      Liu, C.; Pei, Y.; Sun, H.; Ma, J. J. Am. Chem. Soc. 2015, 137, 15809. doi: 10.1021/jacs.5b09466  doi: 10.1021/jacs.5b09466

    35. [35]

      Jiang, D.; Overbury, S. H.; Dai, S. J. Am. Chem. Soc. 2013, 135, 8786. doi: 10.1021/ja402680c  doi: 10.1021/ja402680c

    36. [36]

      Pei, Y.; Gao, Y.; Shao, N.; Zeng, X. C. J. Am. Chem. Soc. 2009, 131, 13619. doi: 10.1021/ja905359b  doi: 10.1021/ja905359b

    37. [37]

      Pei, Y.; Tang, J.; Tang, X.; Huang, Y.; Zeng, X. C. J. Phys. Chem. Lett. 2015, 6, 1390. doi: 10.1021/acs.jpclett.5b00364  doi: 10.1021/acs.jpclett.5b00364

    38. [38]

      Pei, Y.; Pal, R.; Liu, C.; Gao, Y.; Zhang, Z.; Zeng, X. C. J. Am. Chem. Soc. 2012, 134, 3015. doi: 10.1021/ja208559y  doi: 10.1021/ja208559y

    39. [39]

      Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. J. Am. Chem. Soc. 2008, 130, 3756. doi: 10.1021/ja800594p  doi: 10.1021/ja800594p

    40. [40]

      Pei, Y.; Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2008, 130, 7830. doi: 10.1021/ja802975b  doi: 10.1021/ja802975b

    41. [41]

      Malola, S.; Lehtovaara, L.; Knoppe, S.; Hu, K.; Palmer, R. E.; Bürgi, T.; Häkkinen, H. J. Am. Chem. Soc. 2012, 134, 19560. doi: 10.1021/ja309619n  doi: 10.1021/ja309619n

    42. [42]

      Pei, Y.; Lin, S. S.; Su, J.; Liu, C. J. Am. Chem. Soc. 2013, 135, 19060. doi: 10.1021/ja409788k  doi: 10.1021/ja409788k

    43. [43]

      Xu, W. W.; Gao, Y.; Zeng, X. C. Sci. Adv. 2015, 1, e1400211. doi: 10.1126/sciadv.1400211  doi: 10.1126/sciadv.1400211

    44. [44]

      Zhou, Y.; Li, Z. M.; Zheng, K.; Li, G. Acta Phys. -Chim. Sin. 2018, 34(7), 786.  doi: 10.3866/PKU.WHXB201709292

    45. [45]

      Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. Acta Phys. -Chim. Sin. 2018, 34(7), 792.  doi: 10.3866/PKU.WHXB201710091

    46. [46]

      Sun, G. D.; Kang, X.; Jin, S.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Acta Phys. -Chim. Sin. 2018, 34(7), 799.  doi: 10.3866/PKU.WHXB201710124

    47. [47]

      Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, 34(7), 805. doi: 10.3866/PKU.WHXB201710271  doi: 10.3866/PKU.WHXB201710271

    48. [48]

      Liu, M. H. Acta Phys. -Chim. Sin. 2018, 34(6), 553.  doi: 10.3866/PKU.WHXB201710301

    49. [49]

      Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. Nat. Commun. 2016, 7, 13574. doi: 10.1038/ncomms13574  doi: 10.1038/ncomms13574

    50. [50]

      Xu, W. W.; Zeng, X. C.; Gao, Y. Chem. Phys. Lett. 2017, 675, 35. doi: 10.1016/j.cplett.2017.03.001  doi: 10.1016/j.cplett.2017.03.001

    51. [51]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.

    52. [52]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    53. [53]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Re v. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    54. [54]

      Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799  doi: 10.1063/1.448799

    55. [55]

      Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800  doi: 10.1063/1.448800

    56. [56]

      Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975  doi: 10.1063/1.448975

    57. [57]

      Von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. doi: 10.1021/ja960582d  doi: 10.1021/ja960582d

    58. [58]

      Cheng, L.; Yuan, Y.; Zhang, X.; Yang, J. Angew. Chem. Int. Ed. 2013, 52, 9035. doi: 10.1002/anie.201302926  doi: 10.1002/anie.201302926

    59. [59]

      Xu, W. W.; Li, Y.; Gao, Y.; Zeng, X. C. Nanoscale 2016, 8, 7396. doi: 10.1039/C6NR00272B  doi: 10.1039/C6NR00272B

    60. [60]

      Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452  doi: 10.1063/1.458452

    61. [61]

      Delley, B. J. Chem. Phys. 2003, 113, 7756. doi: 10.1063/1.1316015  doi: 10.1063/1.1316015

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    5. [5]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    6. [6]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    7. [7]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    8. [8]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    9. [9]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    10. [10]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    11. [11]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    12. [12]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    13. [13]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    14. [14]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    20. [20]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

Metrics
  • PDF Downloads(6)
  • Abstract views(1089)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return