Citation: GONZÁLEZ Marco Martínez, CÁRDENAS Carlos, RODRÍGUEZ Juan I., LIU Shubin, HEIDAR-ZADEH Farnaz, MIRANDA-QUINTANA Ramón Alain, AYERS Paul W.. Quantitative Electrophilicity Measures[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 662-674. doi: 10.3866/PKU.WHXB201711021 shu

Quantitative Electrophilicity Measures

  • Corresponding author: MIRANDA-QUINTANA Ramón Alain, ramirandaq@gmail.com AYERS Paul W., ayers@mcmaster.ca
  • Received Date: 13 September 2017
    Revised Date: 13 October 2017
    Accepted Date: 30 October 2017
    Available Online: 2 June 2017

    Fund Project: CC acknowledges support by FONDECYT (1140313), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and project RC-130006 CILIS; Chile. PWA acknowledges support from NSERC, the Canada Research Chairs, and Compute Canada; Canada

  • Quantitative correlation of several theoretical electrophilicity measures over different families of organic compounds are examined relative to the experimental values of Mayr et al. Notably, the ability to predict these values accurately will help to elucidate the reactivity and selectivity trends observed in charge-transfer reactions. A crucial advantage of this theoretical approach is that it provides this information without the need of experiments, which are often demanding and time-consuming. Here, two different types of electrophilicity measures were analyzed. First, models derived from conceptual density functional theory (c-DFT), including Parr's original proposal and further generalizations of this index, are investigated. For instance, the approaches of Gázquez et al. and Chamorro et al. are considered, whereby it is possible to distinguish between processes in which a molecule gains or loses electrons. Further, we also explored two novel electrophilicity definitions. On one hand, the potential of environmental perturbations to affect electron incorporation into a system is analyzed in terms of recent developments in c-DFT. These studies highlight the importance of considering the molecular surroundings when a consistent description of chemical reactivity is needed. On the other hand, we test a new definition of electrophilicity that is free from inconsistencies (so-called thermodynamic electrophilicity). This approach is based on Parr's pioneering insights, though it corrects issues present in the standard working expression for the calculation of electrophilicity. Additionally, we use machine-learning tools (i.e., symbolic regression) to identify the models that best fit the experimental values. In this way, the best possible description of the electrophilicity values in terms of different electronic structure quantities is obtained. Overall, this straightforward approach enables one to obtain good correlations between the theoretical and experimental quantities by using the simple, yet powerful, interpretative advantage of c-DFT methods. In general, we observed that the correlations found at the HF/6-31G(d) level of theory are of semi-quantitative value. To obtain more accurate results, we showed that working with families of compounds with similar functional groups is indispensable.
  • 加载中
    1. [1]

      Miller, B. Advanced Organic Chemistry: Reactions and Mechanisms; Prentice-Hall: Upper Saddle River, NJ, USA, 1998.doi: 10.1021/ed075p1558  doi: 10.1021/ed075p1558

    2. [2]

      March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, NY, USA, 1992. doi: 10.1002/0470084960  doi: 10.1002/0470084960

    3. [3]

      Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.doi: 10.1021/ar020094c  doi: 10.1021/ar020094c

    4. [4]

      Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; et al. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y  doi: 10.1021/ja010890y

    5. [5]

      Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938.doi: 10.1002/anie.199409381  doi: 10.1002/anie.199409381

    6. [6]

      Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584.doi: 10.1002/poc.1325  doi: 10.1002/poc.1325

    7. [7]

      Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807.doi: 10.1351/pac200577111807  doi: 10.1351/pac200577111807

    8. [8]

      Liu, S. B. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 179.

    9. [9]

      Chattaraj, P. K.; Giri, S. Ann. Rep. Prog. Chem. C 2009, 105, 13.doi: 10.1039/B802832J  doi: 10.1039/B802832J

    10. [10]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43.doi: 10.1021/cr100149p  doi: 10.1021/cr100149p

    11. [11]

      Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. USA 1998, 95, 11578. doi: 10.1073/pnas.95.20.11578  doi: 10.1073/pnas.95.20.11578

    12. [12]

      Parr, R. G.; von Szentpály, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x  doi: 10.1021/ja983494x

    13. [13]

      Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AID-JCC13 > 3.0.CO; 2-A  doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    14. [14]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.
       

    15. [15]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029  doi: 10.1021/cr990029

    16. [16]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Modern Charge Density Analysis; Gatti, C., Macchi, P., Eds.; Springer: New York, NY, USA, 2012; p. 715.
       

    17. [17]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    18. [18]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.doi: 10.1021/ja9924039  doi: 10.1021/ja9924039

    19. [19]

      Miranda-Quintana, R. A. Conceptual Density Functional Theory and its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.
       

    20. [20]

      Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009.

    21. [21]

      Fuentealba, P.; Cárdenas, C. Chemical Modelling; Springborg, M., Ed.; The Royal Society of Chemistry: London, UK, 2015; Vol. 11, p. 151.
       

    22. [22]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    23. [23]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    24. [24]

      Domingo, L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486.doi: 10.1039/C2RA22886F  doi: 10.1039/C2RA22886F

    25. [25]

      Domingo, L. R.; Zaragoza, R. J.; Saez, J. A.; Arno, M. Molecules 2012, 17, 1335. doi: 10.3390/molecules17021335  doi: 10.3390/molecules17021335

    26. [26]

      Domingo, L. R.; Perez, P.; Contreras, R. Tetrahedron 2004, 60, 6585. doi: 10.1016/j.tet.2004.06.003  doi: 10.1016/j.tet.2004.06.003

    27. [27]

      Domingo, L. R.; Aurell, M. J.; Perez, P.; Contreras, R. J. Phys. Chem. A 2002, 106, 6871. doi: 10.1021/jp020715j  doi: 10.1021/jp020715j

    28. [28]

      Anderson, J. S. M.; Liu, Y. L.; Thomson, J. W.; Ayers, P. W. J. Mol. Struct.: THEOCHEM 2010, 943, 168.doi: 10.1016/j.theochem.2009.12.013  doi: 10.1016/j.theochem.2009.12.013

    29. [29]

      Ayers, P. W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/B500996K  doi: 10.1039/B500996K

    30. [30]

      Chamorro, E.; Chattaraj, P. K.; Fuentealba, P. J. Phys. Chem. A 2003, 107, 7068. doi: 10.1021/jp035435y  doi: 10.1021/jp035435y

    31. [31]

      Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Theor. Chem. Acc. 2005, 113, 257. doi: 10.1007/s00214-005-0634-3  doi: 10.1007/s00214-005-0634-3

    32. [32]

      González, M. M.; Hernández-Castillo, D.; Montero-Cabrera, L. A.; Miranda-Quintana, R. A. Int. J. Quantum Chem. 2017, e25444.doi: 10.1002/qua.25444  doi: 10.1002/qua.25444

    33. [33]

      Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A 2008, 112, 6023. doi: 10.1021/jp711652a  doi: 10.1021/jp711652a

    34. [34]

      Moens, J.; Geerlings, P.; Roos, G. Chem. -A Eur. J. 2007, 13, 8174. doi: 10.1002/chem.200601896  doi: 10.1002/chem.200601896

    35. [35]

      Moens, J.; Roos, G.; Jaque, P.; Proft, F.; Geerlings, P. Chem. -A Eur. J. 2007, 13, 9331. doi: 10.1002/chem.200700547  doi: 10.1002/chem.200700547

    36. [36]

      Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. Curr. Sci. 2004, 86, 535.
       

    37. [37]

      Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K. Biorg. Med. Chem. 2004, 12, 5533. doi: 10.1016/j.bmc.2004.08.013  doi: 10.1016/j.bmc.2004.08.013

    38. [38]

      Rétey, J. Biochim. Biophys. Acta 2003, 1647, 179.doi: 10.1016/S1570-9639(03)00091-8  doi: 10.1016/S1570-9639(03)00091-8

    39. [39]

      Rosenkranz, H. S.; Klopman, G.; Zhang, Y.; Graham, C.; Karol, M. H. Environ. Health Perspect. 1999, 107, 129.  doi: 10.1289/ehp.99107129

    40. [40]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 046101.doi: 10.1063/1.4974987  doi: 10.1063/1.4974987

    41. [41]

      Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n  doi: 10.1021/jp312750n

    42. [42]

      Morell, C.; Labet, V.; Grand, A.; Chermette, H. Phys. Chem. Chem. Phys. 2009, 11, 3414. doi: 10.1039/B818534D  doi: 10.1039/B818534D

    43. [43]

      Chattaraj, P. K. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 2007, 81, 871
       

    44. [44]

      Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2017, 147, 124103. doi: 10.1063/1.4996443  doi: 10.1063/1.4996443

    45. [45]

      Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966. doi: 10.1021/jp065459f  doi: 10.1021/jp065459f

    46. [46]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 896, 73. doi: 10.1016/j.theochem.2008.11.009  doi: 10.1016/j.theochem.2008.11.009

    47. [47]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 901, 145. doi: 10.1016/j.theochem.2009.01.014  doi: 10.1016/j.theochem.2009.01.014

    48. [48]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P. W. Acta Phys. -Chim. Sin. 2018, submitted.

    49. [49]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113.doi: 10.1063/1.4984611  doi: 10.1063/1.4984611

    50. [50]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005  doi: 10.1021/ja00364a005

    51. [51]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185  doi: 10.1063/1.436185

    52. [52]

      Sanderson, R. T. Science 1951, 114, 670. doi: 10.1126/science.114.2973.670  doi: 10.1126/science.114.2973.670

    53. [53]

      Galvan, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92, 6470. doi: 10.1021/j100333a056  doi: 10.1021/j100333a056

    54. [54]

      Vargas, R.; Galvan, M.; Vela, A. J. Phys. Chem. A 1998, 102, 3134. doi: 10.1021/jp972984t  doi: 10.1021/jp972984t

    55. [55]

      Galvan, M.; Vargas, R. J. Phys. Chem. 1992, 96, 1625.doi: 10.1021/j100183a026  doi: 10.1021/j100183a026

    56. [56]

      Ghanty, T. K.; Ghosh, S. K. J. Am. Chem. Soc. 1994, 116, 3943. doi: 10.1021/ja00088a033  doi: 10.1021/ja00088a033

    57. [57]

      Chamorro, E.; Santos, J. C.; Escobar, C. A.; Perez, P. Chem. Phys. Lett. 2006, 431, 210. doi: 10.1016/j.cplett.2006.09.072  doi: 10.1016/j.cplett.2006.09.072

    58. [58]

      Chamorro, E.; Perez, P.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2006, 124, 044105. doi: 10.1063/1.2161187  doi: 10.1063/1.2161187

    59. [59]

      Perez, P.; Chamorro, E.; Ayers, P. W. J. Chem. Phys. 2008, 128, 204108. doi: 10.1063/1.2916714  doi: 10.1063/1.2916714

    60. [60]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 239. doi: 10.1007/s00214-016-1995-5  doi: 10.1007/s00214-016-1995-5

    61. [61]

      Cardenas, C.; Heidar Zadeh, F.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B  doi: 10.1039/C6CP04533B

    62. [62]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    63. [63]

      Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12, 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    64. [64]

      Miranda-Quintana, R. A.; Ayers, P. W. Conceptual Density Functional Theory and Its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press.
       

    65. [65]

      Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144, 244112. doi: 10.1063/1.4953557  doi: 10.1063/1.4953557

    66. [66]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 129, 054111. doi: 10.1063/1.2957900  doi: 10.1063/1.2957900

    67. [67]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108. doi: 10.1063/1.2918731  doi: 10.1063/1.2918731

    68. [68]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2017, 147, 094105. doi: 10.1063/1.4999761  doi: 10.1063/1.4999761

    69. [69]

      Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588.doi: 10.1039/C7CP00224F  doi: 10.1039/C7CP00224F

    70. [70]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/C7CP00692F  doi: 10.1039/C7CP00692F

    71. [71]

      Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/C7CP00691H  doi: 10.1039/C7CP00691H

    72. [72]

      Franco-Pérez, M.; Ayers, P.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    73. [73]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539  doi: 10.1063/1.4932539

    74. [74]

      Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104.doi: 10.1063/1.4906555  doi: 10.1063/1.4906555

    75. [75]

      Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 15070. doi: 10.1039/c6cp00939e  doi: 10.1039/c6cp00939e

    76. [76]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2017, 136, 76.doi: 10.1007/s00214-017-2109-8  doi: 10.1007/s00214-017-2109-8

    77. [77]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 172. doi: 10.1007/s00214-016-1924-7  doi: 10.1007/s00214-016-1924-7

    78. [78]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2016, 135, 189.doi: 10.1007/s00214-016-1945-2  doi: 10.1007/s00214-016-1945-2

    79. [79]

      Miranda-Quintana, R. A.; González, M. M.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 22235. doi: 10.1039/c6cp03213c  doi: 10.1039/c6cp03213c

    80. [80]

      Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.doi: 10.1021/ja01004a002  doi: 10.1021/ja01004a002

    81. [81]

      Klopman, G.; Hudson, R. F. Theor. Chim. Act. 1967, 8, 165.doi: 10.1007/bf00526373  doi: 10.1007/bf00526373

    82. [82]

      Klopman, G.; Klopman, G. Chemical Reactivity and Reaction Paths; Wiley-Interscience: New York, NY, USA, 1974; p. 55.

    83. [83]

      Hudson, R. F.; Klopman, G. Tetrahedron Lett. 1967, 12, 1103.doi: 10.1016/S0040-4039(00)90645-2  doi: 10.1016/S0040-4039(00)90645-2

    84. [84]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 553.doi: 10.1021/ja01005a002  doi: 10.1021/ja01005a002

    85. [85]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 543.doi: 10.1021/ja01005a001  doi: 10.1021/ja01005a001

    86. [86]

      Salem, L. Chem. Br. 1969, 5, 449.

    87. [87]

      Witten, I. H.; Frank, E.; Hall, M. A.; Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Elsevier: Cambridge, MA, USA, 2017.

    88. [88]

      Gertrudes, J. C.; Maltarollo, V. G.; Silva, R. A.; Oliveira, P. R.; Honorio, K. M.; da Silva, A. B. F. Curr. Med. Chem. 2012, 19, 4289. doi: 10.2174/092986712802884259  doi: 10.2174/092986712802884259

    89. [89]

      Carrera, G.; Gupta, S.; Aires-de-Sousa, J. J. Comput. Aided Mol. Des. 2009, 23, 419. doi: 10.1007/s10822-009-9275-2  doi: 10.1007/s10822-009-9275-2

    90. [90]

      Dietterich, T. G. Ai Mag. 1997, 18, 97. doi: 10.1609/aimag.v18i4.1324  doi: 10.1609/aimag.v18i4.1324

    91. [91]

      Carbonell, J. G.; Michalski, R. S.; Mitchell, T. M. Machine Learning: an Artificial Intelligence Approach; Michalski, R. S., Carbonell, J. G., Mitchell, T. M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 1983; p. 3.doi: 10.1007/978-3-662-12405-5_1  doi: 10.1007/978-3-662-12405-5_1

    92. [92]

      Lino, A.; Rocha, A.; Sizo, A. J. Intell. Fuzzy Syst. 2016, 31, 2061. doi: 10.3233/JIFS-169045  doi: 10.3233/JIFS-169045

    93. [93]

      Affenzeller, M.; Winkler, S. M.; Kronberger, G.; Kommenda, M.; Burlacu, B.; Wagner, S. Genetic Programming Theory and Practice XI; Riolo, R., Moore, J. H., Kotanchek, M., Eds.; Springer New York: New York, NY, USA, 2014; p. 175.doi: 10.1007/978-1-4939-0375-7_10  doi: 10.1007/978-1-4939-0375-7_10

    94. [94]

      Billard, L.; Diday, E. Classification, Clustering, and Data Analysis: Recent Advances and Applications; Jajuga, K., Sokolowski, A., Bock, H. H., Eds.; Springer-Verlag: Berlin, Germany, 2012.

    95. [95]

      Billard, L.; Diday, E. J. Am. Stat. Assoc. 2003, 98, 470.doi: 10.1198/016214503000242  doi: 10.1198/016214503000242

    96. [96]

      Billard, L.; Diday, E. Data Analysis, Classification, and Related Methods; Kiers, H. A. L., Rasson, J.-P., Groenen, P. J. F., Schader, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2000; p. 369. doi: 10.1007/978-3-642-59789-3_58  doi: 10.1007/978-3-642-59789-3_58

    97. [97]

      Schmidt, M. D.; Vallabhajosyula, R. R.; Jenkins, J. W.; Hood, J. E.; Soni, A. S.; Wikswo, J. P.; Lipson, H. Phys. Biol. 2011, 8, 055011. doi: 10.1088/1478-3975/8/5/055011  doi: 10.1088/1478-3975/8/5/055011

    98. [98]

      Schmidt, M. W.; Lipson, H. Science 2009, 324, 81.doi: 10.1126/science.1165893  doi: 10.1126/science.1165893

    99. [99]

      Bongard, J.; Lipson, H. Proc. Natl. Acad. Sci. USA 2007, 104, 9943.doi: 10.1073/pnas.0609476104  doi: 10.1073/pnas.0609476104

    100. [100]

      Quade, M.; Abel, M.; Shafi, K.; Niven, R. K. Phys. Rev. B 2016, 94, 012214. doi: 10.1103/PhysRevE.94.012214  doi: 10.1103/PhysRevE.94.012214

    101. [101]

      Koza, J. R. 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990; p. 819.

    102. [102]

      Sharma, S.; Tambe, S. S. Biochem. Eng. J. 2014, 85, 89.doi: 10.1016/j.bej.2014.02.007  doi: 10.1016/j.bej.2014.02.007

    103. [103]

      Langdon, W. B.; Poli, R. Found. Genet. Program.; Springer-Verlag: Berlin, Germany, 2013.

    104. [104]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 33. doi: 10.1007/978-1-4615-0447-4_4  doi: 10.1007/978-1-4615-0447-4_4

    105. [105]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 79. doi: 10.1007/978-1-4615-0447-4_7  doi: 10.1007/978-1-4615-0447-4_7

    106. [106]

      Ryan, C.; Collins, J.; Neill, M. O. Genetic Programming: First European Workshop, EuroGP'98 Paris, France, April 14–15, 1998 Proceedings; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T. C., Eds.; Springer: Berlin, Heidelberg, Germany, 1998;, p. 83.doi: 10.1007/BFb0055930  doi: 10.1007/BFb0055930

    107. [107]

      Luke, S.; Spector, L. Genetic Programming 1997: Proceedings of the Second Annual Conference (GP97); Koza, J., Ed.; San Francisco, CA, USA, 1997; p. 240.

    108. [108]

      Spears, W. M.; Anand, V. Methodologies for Intelligent Systems: 6th International Symposium, ISMIS '91 Charlotte, N. C., USA, October 16–19, 1991 Proceedings; Ras, Z. W., Zemankova, M., Eds.; Springer: Berlin, Heidelberg, Germany, 1991; p. 409.doi: 10.1007/3-540-54563-8_104  doi: 10.1007/3-540-54563-8_104

    109. [109]

      Chomsky, N. IRE Trans. Inf. Theory 1956, 2, 113. doi: 10.1109/TIT.1956.1056813  doi: 10.1109/TIT.1956.1056813

    110. [110]

      Ginsburg, S. The Mathematical Theory of Context Free Languages; McGraw-Hill, New York, NY, USA, 1966.

    111. [111]

      Temkin, J. M.; Gilder, M. R. Bioinformatics 2003, 19, 2046.doi: 10.1093/bioinformatics/btg279  doi: 10.1093/bioinformatics/btg279

    112. [112]

      Trelea, I. C. Inf. Proc. Lett. 2003, 85, 317.doi: 10.1016/S0020-0190(02)00447-7  doi: 10.1016/S0020-0190(02)00447-7

    113. [113]

      Mayr, H. http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/; Vol. 2017 (accessed Oct 30, 2017).
       

    114. [114]

      Mayr, H. http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html; Vol. 2017 (accessed Oct 30, 2017).
       

    115. [115]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009.
       

    116. [116]

      Wagner, S.; Kronberger, G.; Beham, A.; Kommenda, M.; Scheibenpflug, A.; Pitzer, E.; Vonolfen, S.; Kofler, M.; Winkler, S.; Dorfer, V.; et al. Advanced Methods and Applications in Computational Intelligence; Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z., Eds.; Springer International Publishing: Heidelberg, Germany, 2014; p. 197. doi: 10.1007/978-3-319-01436-4_10  doi: 10.1007/978-3-319-01436-4_10

    117. [117]

      Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    118. [118]

      Miranda-Quintana, R. A. Chem. Phys. Lett. 2016, 658, 328.doi: 10.1016/j.cplett.2016.06.068  doi: 10.1016/j.cplett.2016.06.068

    119. [119]

      Zielinski, F.; Tognetti, V.; Joubert, L. Chem. Phys. Lett. 2012, 527, 67. doi: 10.1016/j.cplett.2012.01.011  doi: 10.1016/j.cplett.2012.01.011

    120. [120]

      Bultinck, P.; Fias, S.; Alsenoy, C. V.; Ayers, P. W.; Carbó-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

  • 加载中
    1. [1]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    5. [5]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    6. [6]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    7. [7]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    10. [10]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    11. [11]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    12. [12]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    13. [13]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    14. [14]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    15. [15]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    16. [16]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    17. [17]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    18. [18]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    19. [19]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    20. [20]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

Metrics
  • PDF Downloads(7)
  • Abstract views(355)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return