Citation: FINZEL Kati., BULTINCK Patrick.. The Influence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 650-655. doi: 10.3866/PKU.WHXB201710251 shu

The Influence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations

  • Corresponding author: FINZEL Kati., Kati.Finzel@UGent.be
  • Received Date: 25 August 2017
    Revised Date: 27 September 2017
    Accepted Date: 19 October 2017
    Available Online: 15 June 2017

    Fund Project: The project was supported by the Fund for Scientific Research in Flanders (FWO-Vlaanderen) for Research Grant G021115N

  • In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other. This aspect is first derived in an orbital-free context. It is shown that the total Fermi potential depends on the density only, the individual parts, the Pauli kinetic energy and the exchange-correlation energy, however, are orbital dependent and as such mutually influence each other. The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy. The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the order of a few Hartrees. For chemical purposes, however, the energetic performance as a function of the nuclear coordinates is much more important than total energies. Therefore, the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide. The data reveals that, the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances. Therefore, the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.
  • 
    1. [1]

      Ho, G. S.; Lignères, V. L.; Carter, E. A. Comput. Phys. Comm. 2008, 179, 839. doi: 10.1016/j.cpc.2008.07.002  doi: 10.1016/j.cpc.2008.07.002

    2. [2]

      Karasiev, V.; Sjostrom, T.; Trickey, S. B. Computer Phys. Commun. 2014, 185, 3240. doi: 10.1016/j.cpc.2014.08.023  doi: 10.1016/j.cpc.2014.08.023

    3. [3]

      Lehtomäki, J.; Makkonen, I.; Caro, M. A.; Harju, A.; Lopez-Acevedo, O. J. Chem. Phys. 2014, 141, 234102. doi: 10.1063/1.4903450  doi: 10.1063/1.4903450

    4. [4]

      Ghosh, S.; Suryanarayana, P. J. Comput. Phys. 2016, 307, 634. doi: 10.1016/j.jcp.2015.12.027  doi: 10.1016/j.jcp.2015.12.027

    5. [5]

      Thomas, L. H. Proc. Cambridge Philos. Soc. 1927, 23, 542. doi: 10.1017/S0305004100011683  doi: 10.1017/S0305004100011683

    6. [6]

      Fermi, E. Zeitschrift für Physik 1928, 48, 73. doi: 10.1007/BF01351576  doi: 10.1007/BF01351576

    7. [7]

      Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864  doi: 10.1103/PhysRev.136.B864

    8. [8]

      Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. doi: 10.1103/PhysRev.140.A1133  doi: 10.1103/PhysRev.140.A1133

    9. [9]

      Ayers, P. W.; Liu, S. Phys. Rev. A 2007, 75, 022514. doi: 10.1103/PhysRevA.75.022514  doi: 10.1103/PhysRevA.75.022514

    10. [10]

      Ludeña, E. V.; Illas, F.; Ramirez-Solis, A. Int. J. Mod. Phys. B 2008, 22, 4642. doi: 10.1142/S0217979208050395  doi: 10.1142/S0217979208050395

    11. [11]

      Kryachko, E. S.; Ludeña, E. V. Phys. Rep. 2014, 544, 123. doi: 10.1016/j.physrep.2014.06.002  doi: 10.1016/j.physrep.2014.06.002

    12. [12]

      von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700  doi: 10.1007/BF01337700

    13. [13]

      Kirzhnits, D. A. Sov. Phys. JETP 1957, 5, 64.

    14. [14]

      Hodges, C. H. Can. J. Phys. 1973, 51, 1428. doi: 10.1139/p73-189  doi: 10.1139/p73-189

    15. [15]

      Murphy, D. R. Phys. Rev. A 1981, 24, 1682. doi: 10.1103/PhysRevA.24.1682  doi: 10.1103/PhysRevA.24.1682

    16. [16]

      Lee, H.; Lee, C.; Parr, R. G. Phys. Rev. A 1991, 44, 768. doi: 10.1103/PhysRevA.44.768  doi: 10.1103/PhysRevA.44.768

    17. [17]

      Fuentealba, P.; Reyes, O. Chem. Phys. Lett. 1995, 232, 31. doi: 10.1016/0009-2614(94)01321-L  doi: 10.1016/0009-2614(94)01321-L

    18. [18]

      Tran, F.; Wesolowski, T. A. Int. J. Quantum Chem. 2002, 89, 441. doi: 10.1002/qua.10306  doi: 10.1002/qua.10306

    19. [19]

      Lee, D.; Constantin, L. A.; Perdew, J. P.; Burke, K. J. Chem. Phys. 2009, 130, 034107. doi: 10.1063/1.3059783  doi: 10.1063/1.3059783

    20. [20]

      Karasiev, V.; Chakraborty, D.; Trickey, S. B. Many-Electron Approaches in Physics, Chemistry and Mathematic; Delle Site, L.; Bach, V. Eds.; Springer Verlag: Heidelberg, Germany, 2014; pp. 113-134.

    21. [21]

      Karasiev, V.; Trickey, S. B. Adv. Quantum Chem. 2015, 71, 221. doi: 10.1016/bs.aiq.2015.02.004  doi: 10.1016/bs.aiq.2015.02.004

    22. [22]

      Ghiringhelli, L. M.; Delle Site, L. Phys. Rev. B 2008, 77, 073104. doi: 10.1103/PhysRevB.77.073104  doi: 10.1103/PhysRevB.77.073104

    23. [23]

      Ghiringhelli, L. M.; Hamilton, I. P.; Delle Site, L. J. Chem. Phys. 2010, 132, 014106. doi: 10.1063/1.3280953  doi: 10.1063/1.3280953

    24. [24]

      Trickey, S.; Karasiev, V. V.; Vela, A. Phys. Rev. B 2011, 84, 075146. doi: 10.1103/PhysRevB.84.075146  doi: 10.1103/PhysRevB.84.075146

    25. [25]

      Wang, Y. A.; Carter, E. A. Theoretical Methods in Condensed Phase Chemistry; Schwarz, S. D. Ed.; Kluwer: New York, NY, USA, 2000; pp. 117--184.

    26. [26]

      Shin, I.; Carter, E. A. J. Chem. Phys. 2014, 140, 18A531. doi: 10.1063/1.4869867  doi: 10.1063/1.4869867

    27. [27]

      Ayers, P. W.; Lucks, J. B.; Parr, R. G. Acta Chimica et Physica Debrecina 2002, 34, 223.

    28. [28]

      Bartell, L. S.; Brockway, L. O. Phys. Rev. 1953, 90, 833. doi: 10.1103/PhysRev.90.833  doi: 10.1103/PhysRev.90.833

    29. [29]

      Waber, J. T.; Cromer, D. T. J. Chem. Phys. 1965, 42, 4116. doi: 10.1063/1.1695904  doi: 10.1063/1.1695904

    30. [30]

      Weinstein, H.; Politzer, P.; Srebrenik, S. Theor. Chim. Acta 1975, 38, 159. doi: 10.1007/BF00581473  doi: 10.1007/BF00581473

    31. [31]

      Schmider, H.; Sagar, R.; Smith, V. H., Jr. Can. J. Chem. 1992, 70, 506. doi: 10.1139/v92-072  doi: 10.1139/v92-072

    32. [32]

      Yang, W. Phys. Rev. A 1986, 34, 4575. doi: 10.1103/PhysRevA.34.4575  doi: 10.1103/PhysRevA.34.4575

    33. [33]

      Dreizler, R. M.; Gross, E. K. U. Density Functional Theory; Springer Verlang: Berlin Heidelberg, Germany, 1990.

    34. [34]

      March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4  doi: 10.1016/0375-9601(86)90123-4

    35. [35]

      Levy, M.; Ou-Yang, H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625  doi: 10.1103/PhysRevA.38.625

    36. [36]

      Nagy, A. Acta Phys. Hung. 1991, 70, 321. doi: 10.1007/BF03054145  doi: 10.1007/BF03054145

    37. [37]

      Nagy, A.; March, N. H. Int. J. Quantum Chem. 1991, 39, 615. doi: 10.1002/qua.560390408  doi: 10.1002/qua.560390408

    38. [38]

      Nagy, A.; March, N. H. Phys. Chem. Liq. 1992, 25, 37. doi: 10.1080/00319109208027285  doi: 10.1080/00319109208027285

    39. [39]

      Holas, A.; March, N. H. Int. J. Quantum Chem. 1995, 56, 371. doi: 10.1002/qua.560560423  doi: 10.1002/qua.560560423

    40. [40]

      Amovilli, C.; March, N. H. Int. J. Quantum Chem. 1998, 66, 281. doi: 10.1002/(SICI)1097-461X(1998)66:4 <281::AID-QUA3>3.0.CO;2-R  doi: 10.1002/(SICI)1097-461X(1998)66:4<281::AID-QUA3>3.0.CO;2-R

    41. [41]

      Nagy, A. Chem. Phys. Lett. 2008, 460, 343. doi: 10.1016/j.cplett.2008.05.077  doi: 10.1016/j.cplett.2008.05.077

    42. [42]

      Nagy, A. Int. J. Quantum Chem. 2010, 110, 2117. doi: 10.1002/qua.22497  doi: 10.1002/qua.22497

    43. [43]

      Nagy, A. J. Chem. Phys. 2011, 135, 044106. doi: 10.1063/1.3607313  doi: 10.1063/1.3607313

    44. [44]

      Finzel, K. Int. J. Quantum Chem. 2015, 115, 1629. doi: 10.1002/qua.24986  doi: 10.1002/qua.24986

    45. [45]

      Finzel, K. J. Chem. Phys. 2016, 144, 034108. doi: 10.1063/1.4940035  doi: 10.1063/1.4940035

    46. [46]

      Finzel, K. Theor. Chem. Acc. 2016, 135, 87. doi: 10.1007/s00214-016-1850-8  doi: 10.1007/s00214-016-1850-8

    47. [47]

      Finzel, K. Int. J. Quantum Chem. 2016, 116, 1261. doi: 10.1002/qua.25169  doi: 10.1002/qua.25169

    48. [48]

      Finzel, K.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 255. doi: 10.1007/s00214-016-2013-7  doi: 10.1007/s00214-016-2013-7

    49. [49]

      Finzel, K.; Ayers, P. W. Int. J. Quantum Chem. 2017, 117, E25364. doi: 10.1002/qua.25364  doi: 10.1002/qua.25364

    50. [50]

      Finzel, K.; Baranov, A. I. Int. J. Quantum Chem. 2016, 117, 40. doi: 10.1002/qua.25312  doi: 10.1002/qua.25312

    51. [51]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.

    52. [52]

      Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010  doi: 10.1103/PhysRevA.32.2010

    53. [53]

      Bartolotti, L. J.; Acharya, P. K. J. Chem. Phys. 1982, 77, 4576. doi: 10.1063/1.444409  doi: 10.1063/1.444409

    54. [54]

      Ryabinkin, I. G.; Kananenka, A. A.; Staroverov, V. N. Phys. Rev. Lett. 2013, 111, 074112. doi: 10.1103/PhysRevLett.111.013001  doi: 10.1103/PhysRevLett.111.013001

    55. [55]

      Kohut, S. V.; Ryabinkin, I. G.; Staroverov, V. N. J. Chem Phys. 2014, 140, 18A535. doi: 10.1063/1.4871500  doi: 10.1063/1.4871500

    56. [56]

      Slater, J. C. Phys. Rev. 1951, 81, 385. doi: 10.1103/PhysRev.81.385  doi: 10.1103/PhysRev.81.385

    57. [57]

      Görling, A. Phys. Rev. A 1992, 46, 3753. doi: 10.1103/PhysRevA.46.3753  doi: 10.1103/PhysRevA.46.3753

    58. [58]

      Görling, A.; Ernzerhof, M. Phys. Rev. A 1995, 51, 4501. doi: 10.1103/PhysRevA.51.4501  doi: 10.1103/PhysRevA.51.4501

    59. [59]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.

    60. [60]

      Woon, D. E.; Dunning, T. H. J. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303  doi: 10.1063/1.464303

    61. [61]

      Slater, J. C. Phys. Rev. 1969, 179, 28. doi: 10.1103/PhysRev.179.28  doi: 10.1103/PhysRev.179.28

    62. [62]

      Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671  doi: 10.1103/PhysRevB.46.6671

    63. [63]

      Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533. doi: 10.1103/PhysRevB.54.16533  doi: 10.1103/PhysRevB.54.16533

    64. [64]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    65. [65]

      Van Voorhis, T.; Scuseria, G. E. J. Chem. Phys. 1998, 109, 400. doi: 10.1063/1.476577  doi: 10.1063/1.476577

    66. [66]

      Perdew, J. P.; Ruzsinszky, A.; Gábor, I.; Constantin, A. L.; Sun, J. Phys. Rev. Lett. 2009, 103, 026403. doi: 10.1103/PhysRevLett.103.026403  doi: 10.1103/PhysRevLett.103.026403

    67. [67]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    1. [1]

      Ho, G. S.; Lignères, V. L.; Carter, E. A. Comput. Phys. Comm. 2008, 179, 839. doi: 10.1016/j.cpc.2008.07.002  doi: 10.1016/j.cpc.2008.07.002

    2. [2]

      Karasiev, V.; Sjostrom, T.; Trickey, S. B. Computer Phys. Commun. 2014, 185, 3240. doi: 10.1016/j.cpc.2014.08.023  doi: 10.1016/j.cpc.2014.08.023

    3. [3]

      Lehtomäki, J.; Makkonen, I.; Caro, M. A.; Harju, A.; Lopez-Acevedo, O. J. Chem. Phys. 2014, 141, 234102. doi: 10.1063/1.4903450  doi: 10.1063/1.4903450

    4. [4]

      Ghosh, S.; Suryanarayana, P. J. Comput. Phys. 2016, 307, 634. doi: 10.1016/j.jcp.2015.12.027  doi: 10.1016/j.jcp.2015.12.027

    5. [5]

      Thomas, L. H. Proc. Cambridge Philos. Soc. 1927, 23, 542. doi: 10.1017/S0305004100011683  doi: 10.1017/S0305004100011683

    6. [6]

      Fermi, E. Zeitschrift für Physik 1928, 48, 73. doi: 10.1007/BF01351576  doi: 10.1007/BF01351576

    7. [7]

      Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864  doi: 10.1103/PhysRev.136.B864

    8. [8]

      Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. doi: 10.1103/PhysRev.140.A1133  doi: 10.1103/PhysRev.140.A1133

    9. [9]

      Ayers, P. W.; Liu, S. Phys. Rev. A 2007, 75, 022514. doi: 10.1103/PhysRevA.75.022514  doi: 10.1103/PhysRevA.75.022514

    10. [10]

      Ludeña, E. V.; Illas, F.; Ramirez-Solis, A. Int. J. Mod. Phys. B 2008, 22, 4642. doi: 10.1142/S0217979208050395  doi: 10.1142/S0217979208050395

    11. [11]

      Kryachko, E. S.; Ludeña, E. V. Phys. Rep. 2014, 544, 123. doi: 10.1016/j.physrep.2014.06.002  doi: 10.1016/j.physrep.2014.06.002

    12. [12]

      von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700  doi: 10.1007/BF01337700

    13. [13]

      Kirzhnits, D. A. Sov. Phys. JETP 1957, 5, 64.

    14. [14]

      Hodges, C. H. Can. J. Phys. 1973, 51, 1428. doi: 10.1139/p73-189  doi: 10.1139/p73-189

    15. [15]

      Murphy, D. R. Phys. Rev. A 1981, 24, 1682. doi: 10.1103/PhysRevA.24.1682  doi: 10.1103/PhysRevA.24.1682

    16. [16]

      Lee, H.; Lee, C.; Parr, R. G. Phys. Rev. A 1991, 44, 768. doi: 10.1103/PhysRevA.44.768  doi: 10.1103/PhysRevA.44.768

    17. [17]

      Fuentealba, P.; Reyes, O. Chem. Phys. Lett. 1995, 232, 31. doi: 10.1016/0009-2614(94)01321-L  doi: 10.1016/0009-2614(94)01321-L

    18. [18]

      Tran, F.; Wesolowski, T. A. Int. J. Quantum Chem. 2002, 89, 441. doi: 10.1002/qua.10306  doi: 10.1002/qua.10306

    19. [19]

      Lee, D.; Constantin, L. A.; Perdew, J. P.; Burke, K. J. Chem. Phys. 2009, 130, 034107. doi: 10.1063/1.3059783  doi: 10.1063/1.3059783

    20. [20]

      Karasiev, V.; Chakraborty, D.; Trickey, S. B. Many-Electron Approaches in Physics, Chemistry and Mathematic; Delle Site, L.; Bach, V. Eds.; Springer Verlag: Heidelberg, Germany, 2014; pp. 113-134.

    21. [21]

      Karasiev, V.; Trickey, S. B. Adv. Quantum Chem. 2015, 71, 221. doi: 10.1016/bs.aiq.2015.02.004  doi: 10.1016/bs.aiq.2015.02.004

    22. [22]

      Ghiringhelli, L. M.; Delle Site, L. Phys. Rev. B 2008, 77, 073104. doi: 10.1103/PhysRevB.77.073104  doi: 10.1103/PhysRevB.77.073104

    23. [23]

      Ghiringhelli, L. M.; Hamilton, I. P.; Delle Site, L. J. Chem. Phys. 2010, 132, 014106. doi: 10.1063/1.3280953  doi: 10.1063/1.3280953

    24. [24]

      Trickey, S.; Karasiev, V. V.; Vela, A. Phys. Rev. B 2011, 84, 075146. doi: 10.1103/PhysRevB.84.075146  doi: 10.1103/PhysRevB.84.075146

    25. [25]

      Wang, Y. A.; Carter, E. A. Theoretical Methods in Condensed Phase Chemistry; Schwarz, S. D. Ed.; Kluwer: New York, NY, USA, 2000; pp. 117--184.

    26. [26]

      Shin, I.; Carter, E. A. J. Chem. Phys. 2014, 140, 18A531. doi: 10.1063/1.4869867  doi: 10.1063/1.4869867

    27. [27]

      Ayers, P. W.; Lucks, J. B.; Parr, R. G. Acta Chimica et Physica Debrecina 2002, 34, 223.

    28. [28]

      Bartell, L. S.; Brockway, L. O. Phys. Rev. 1953, 90, 833. doi: 10.1103/PhysRev.90.833  doi: 10.1103/PhysRev.90.833

    29. [29]

      Waber, J. T.; Cromer, D. T. J. Chem. Phys. 1965, 42, 4116. doi: 10.1063/1.1695904  doi: 10.1063/1.1695904

    30. [30]

      Weinstein, H.; Politzer, P.; Srebrenik, S. Theor. Chim. Acta 1975, 38, 159. doi: 10.1007/BF00581473  doi: 10.1007/BF00581473

    31. [31]

      Schmider, H.; Sagar, R.; Smith, V. H., Jr. Can. J. Chem. 1992, 70, 506. doi: 10.1139/v92-072  doi: 10.1139/v92-072

    32. [32]

      Yang, W. Phys. Rev. A 1986, 34, 4575. doi: 10.1103/PhysRevA.34.4575  doi: 10.1103/PhysRevA.34.4575

    33. [33]

      Dreizler, R. M.; Gross, E. K. U. Density Functional Theory; Springer Verlang: Berlin Heidelberg, Germany, 1990.

    34. [34]

      March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4  doi: 10.1016/0375-9601(86)90123-4

    35. [35]

      Levy, M.; Ou-Yang, H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625  doi: 10.1103/PhysRevA.38.625

    36. [36]

      Nagy, A. Acta Phys. Hung. 1991, 70, 321. doi: 10.1007/BF03054145  doi: 10.1007/BF03054145

    37. [37]

      Nagy, A.; March, N. H. Int. J. Quantum Chem. 1991, 39, 615. doi: 10.1002/qua.560390408  doi: 10.1002/qua.560390408

    38. [38]

      Nagy, A.; March, N. H. Phys. Chem. Liq. 1992, 25, 37. doi: 10.1080/00319109208027285  doi: 10.1080/00319109208027285

    39. [39]

      Holas, A.; March, N. H. Int. J. Quantum Chem. 1995, 56, 371. doi: 10.1002/qua.560560423  doi: 10.1002/qua.560560423

    40. [40]

      Amovilli, C.; March, N. H. Int. J. Quantum Chem. 1998, 66, 281. doi: 10.1002/(SICI)1097-461X(1998)66:4 <281::AID-QUA3>3.0.CO;2-R  doi: 10.1002/(SICI)1097-461X(1998)66:4<281::AID-QUA3>3.0.CO;2-R

    41. [41]

      Nagy, A. Chem. Phys. Lett. 2008, 460, 343. doi: 10.1016/j.cplett.2008.05.077  doi: 10.1016/j.cplett.2008.05.077

    42. [42]

      Nagy, A. Int. J. Quantum Chem. 2010, 110, 2117. doi: 10.1002/qua.22497  doi: 10.1002/qua.22497

    43. [43]

      Nagy, A. J. Chem. Phys. 2011, 135, 044106. doi: 10.1063/1.3607313  doi: 10.1063/1.3607313

    44. [44]

      Finzel, K. Int. J. Quantum Chem. 2015, 115, 1629. doi: 10.1002/qua.24986  doi: 10.1002/qua.24986

    45. [45]

      Finzel, K. J. Chem. Phys. 2016, 144, 034108. doi: 10.1063/1.4940035  doi: 10.1063/1.4940035

    46. [46]

      Finzel, K. Theor. Chem. Acc. 2016, 135, 87. doi: 10.1007/s00214-016-1850-8  doi: 10.1007/s00214-016-1850-8

    47. [47]

      Finzel, K. Int. J. Quantum Chem. 2016, 116, 1261. doi: 10.1002/qua.25169  doi: 10.1002/qua.25169

    48. [48]

      Finzel, K.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 255. doi: 10.1007/s00214-016-2013-7  doi: 10.1007/s00214-016-2013-7

    49. [49]

      Finzel, K.; Ayers, P. W. Int. J. Quantum Chem. 2017, 117, E25364. doi: 10.1002/qua.25364  doi: 10.1002/qua.25364

    50. [50]

      Finzel, K.; Baranov, A. I. Int. J. Quantum Chem. 2016, 117, 40. doi: 10.1002/qua.25312  doi: 10.1002/qua.25312

    51. [51]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.

    52. [52]

      Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010  doi: 10.1103/PhysRevA.32.2010

    53. [53]

      Bartolotti, L. J.; Acharya, P. K. J. Chem. Phys. 1982, 77, 4576. doi: 10.1063/1.444409  doi: 10.1063/1.444409

    54. [54]

      Ryabinkin, I. G.; Kananenka, A. A.; Staroverov, V. N. Phys. Rev. Lett. 2013, 111, 074112. doi: 10.1103/PhysRevLett.111.013001  doi: 10.1103/PhysRevLett.111.013001

    55. [55]

      Kohut, S. V.; Ryabinkin, I. G.; Staroverov, V. N. J. Chem Phys. 2014, 140, 18A535. doi: 10.1063/1.4871500  doi: 10.1063/1.4871500

    56. [56]

      Slater, J. C. Phys. Rev. 1951, 81, 385. doi: 10.1103/PhysRev.81.385  doi: 10.1103/PhysRev.81.385

    57. [57]

      Görling, A. Phys. Rev. A 1992, 46, 3753. doi: 10.1103/PhysRevA.46.3753  doi: 10.1103/PhysRevA.46.3753

    58. [58]

      Görling, A.; Ernzerhof, M. Phys. Rev. A 1995, 51, 4501. doi: 10.1103/PhysRevA.51.4501  doi: 10.1103/PhysRevA.51.4501

    59. [59]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.

    60. [60]

      Woon, D. E.; Dunning, T. H. J. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303  doi: 10.1063/1.464303

    61. [61]

      Slater, J. C. Phys. Rev. 1969, 179, 28. doi: 10.1103/PhysRev.179.28  doi: 10.1103/PhysRev.179.28

    62. [62]

      Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671  doi: 10.1103/PhysRevB.46.6671

    63. [63]

      Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533. doi: 10.1103/PhysRevB.54.16533  doi: 10.1103/PhysRevB.54.16533

    64. [64]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    65. [65]

      Van Voorhis, T.; Scuseria, G. E. J. Chem. Phys. 1998, 109, 400. doi: 10.1063/1.476577  doi: 10.1063/1.476577

    66. [66]

      Perdew, J. P.; Ruzsinszky, A.; Gábor, I.; Constantin, A. L.; Sun, J. Phys. Rev. Lett. 2009, 103, 026403. doi: 10.1103/PhysRevLett.103.026403  doi: 10.1103/PhysRevLett.103.026403

    67. [67]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    5. [5]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    6. [6]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    7. [7]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    8. [8]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    9. [9]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    10. [10]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    11. [11]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    12. [12]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    13. [13]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    14. [14]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    17. [17]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    20. [20]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

Metrics
  • PDF Downloads(7)
  • Abstract views(229)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return