Citation: YU Donghai., RONG Chunying., LU Tian., DE PROFT Frank., LIU Shubin.. Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 639-649. doi: 10.3866/PKU.WHXB201710231 shu

Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory

  • Corresponding author: RONG Chunying., rongchunying@aliyun.com DE PROFT Frank., fdeprof@vub.ac.be LIU Shubin., shubin@email.unc.edu
  • Received Date: 31 August 2017
    Revised Date: 18 October 2017
    Accepted Date: 18 October 2017
    Available Online: 23 June 2017

    Fund Project: CYR and SBL acknowledge support from the National Natural Science Foundation of China (21503076) and Hunan Provincial Natural Science Foundation of China (2017JJ3201). DHY acknowledges the support from the Hunan Provincial Innovation Foundation for Postgraduates (CX2017B179), and China Scholarship Council (201706720015). FDP acknowledges the Research Foundation Flanders (FWO) for continuous support to his group and the Vrije Universiteit Brussel for support, among other through a Strategic Research Program awarded to his group. Finally, FDP acknowledges the Francqui foundation for a position as Francqui Research Professor

  • Although a large variety of aromatic systems have been unveiled in the literature, justifying their origin of stability and understanding their nature of aromaticity is still an unaccomplished task. In this work, using tools recently developed by us within the density functional reactivity theory framework, where we employ simple density functionals to quantify molecular structural and reactivity properties, we examine the aromaticity concept from a different perspective. Using six quantities from the information-theoretic approach, namely, the Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, Onicescu information energy, information gain, and relative Rényi entropy, and four aromaticity descriptors, namely, the aromatic stabilization energy (ASE) index, the harmonic oscillator model of aromaticity (HOMA) index, the aromatic fluctuation (FLU) index, and the nucleus-independent chemical shift (NICS) index, we systematically examined the correlations between substituted fulvene derivatives fused with one, two, and three benzene rings. Among the 14 benzofulvene derivatives studied in this work, there were seven single-fused, four double-fused, and three triple-fused benzofulvene derivatives. Our results show that the aromaticity indexes are often well correlated with one another. The same is true for information-theoretic quantities. Moreover, these correlations are valid across all series of benzofulvene derivatives with different ring structures. The cross-correlations between information-theoretic quantities and aromaticity indexes were usually strong. However, two completely opposite patterns were observed; as a consequence, these correlations are not valid across all series of benzofulvene derivatives. The nature of these correlations depends on the nature of the ring structure. The two groups of systems, each obeying the same cross-correlation patterns, have a total number of 4n + 2 and 4n π electrons, respectively, which are in agreement with Hückel's rule of aromaticity and antiaromaticity. Compared with the results obtained for systems without a benzene fused ring, the correlation patterns of these quantities were always found to be the same, both with and without fused benzene rings. This suggests that, despite benzene's aromaticity, its fusion with a fulvene moiety does not modify the aromaticity and antiaromaticity of the fulvene ring. These results confirm that the fusion of benzene rings with a fulvene moiety has no influence on the aromatic nature of the fulvene moiety. Thus, the aromaticity and antiaromaticity of benzene-fused fulvene derivatives are solely determined by the fulvene moiety. These results should provide a new understanding of the origin and nature of aromaticity and antiaromaticity.
  • 加载中
    1. [1]

      Solà, M. Front. Chem. 2017, 5, 1. doi: 10.3389/fchem.2017.00022  doi: 10.3389/fchem.2017.00022

    2. [2]

      Herndon, W. C.; Mills, N. S. J. Org. Chem. 2005, 70, 8492. doi: 10.1021/jo051289b  doi: 10.1021/jo051289b

    3. [3]

      Skov, A. B.; Broman, S. L.; Gertsen, A. S.; Elm, J.; Jevric, M.; Cacciarini, M.; Kadziola, A.; Mikkelsen, K. V.; Nielsen, M. B. Chem. -Eur. J. 2016, 22, 14567. doi: 10.1002/chem.201601190  doi: 10.1002/chem.201601190

    4. [4]

      Aihara, J. -I. J. Am. Chem. Soc. 2006, 128, 2873. doi: 10.1021/ja056430c  doi: 10.1021/ja056430c

    5. [5]

      Cyrański, M. K. Chem. Rev. 2005, 105, 3773. doi: 10.1021/cr0300845  doi: 10.1021/cr0300845

    6. [6]

      Feixas, F.; Matito, E.; Poater, J.; Solà, M. Chem. Soc. Rev. 2015, 44, 6434. doi: 10.1039/C5CS00066A  doi: 10.1039/C5CS00066A

    7. [7]

      Sumita, A.; Gasonoo, M.; Boblak, K. J.; Ohwada, T.; Klumpp, D. A. Chem. -Eur. J. 2017, 23, 2566. doi: 10.1002/chem.201606036  doi: 10.1002/chem.201606036

    8. [8]

      Szczepanik, D. W.; Solà, M.; Andrzejak, M.; Pawełek, B.; Dominikowska, J.; Kukułka, M.; Dyduch, K.; Krygowski, T. M.; Szatylowicz, H. J. Comput. Chem. 2017, 38, 1640. doi: 10.1002/jcc.24805  doi: 10.1002/jcc.24805

    9. [9]

      Liu, J. Z.; Ma, J.; Zhang, K.; Ravat, P.; Machata, P.; Avdoshenko, S.; Hennersdorf, F.; Komber, H.; Pisula, W.; Weigand, J. J.; et al. J. Am. Chem. Soc. 2017, 139, 7513. doi: 10.1021/jacs.7b01619  doi: 10.1021/jacs.7b01619

    10. [10]

      Yoon, Z. S.; Osuka, A.; Kim, D. Nat. Chem. 2009, 1, 113. doi: 10.1038/nchem.172  doi: 10.1038/nchem.172

    11. [11]

      Frederickson, C. K.; Zakharov, L. N.; Haley, M. M. J. Am. Chem. Soc. 2016, 138, 16827. doi: 10.1021/jacs.6b11397  doi: 10.1021/jacs.6b11397

    12. [12]

      Boldyrev, A. I.; Popov, I. A.; Starikova, A. A.; Steglenko, D. V. Chem. -Eur. J. 2017. doi: 10.1002/chem.201702035  doi: 10.1002/chem.201702035

    13. [13]

      Marcos, E.; Anglada, J. M.; Torrent-Sucarrat, M. J. Org. Chem. 2014, 79, 5036. doi: 10.1021/jo500569p  doi: 10.1021/jo500569p

    14. [14]

      Stępień, M.; Latos-Grażyński, L.; Sprutta, N.; Chwalisz, P.; Szterenberg, L. Angew. Chem. 2007, 119, 8015. doi: 10.1002/ange.200700555  doi: 10.1002/ange.200700555

    15. [15]

      Szyszko, B.; Sprutta, N.; Chwalisz, P.; Stępień, M.; Latos-Grażyński, L. Chem. -Eur. J. 2014, 20, 1985. doi: 10.1002/chem.201303676  doi: 10.1002/chem.201303676

    16. [16]

      Mobius, K.; Plato, M.; Klihm, G.; Laurich, C.; Savitsky, A.; Lubitz, W.; Szyszko, B.; Stepien, M.; Latos-Grazynski, L. Phys. Chem. Chem. Phys. 2015, 17, 6644. doi: 10.1039/C4CP05745G  doi: 10.1039/C4CP05745G

    17. [17]

      Möbius, K.; Savitsky, A.; Lubitz, W.; Plato, M. Appl. Magn. Reson. 2016, 47, 757. doi: 10.1007/s00723-016-0789-1  doi: 10.1007/s00723-016-0789-1

    18. [18]

      Marcos, E.; Anglada, J. M.; Torrent-Sucarrat, M. J. Phys. Chem. C 2012, 116, 24358. doi: 10.1021/jp3083612  doi: 10.1021/jp3083612

    19. [19]

      Rosenberg, M.; Dahlstrand, C.; Kils , K.; Ottosson, H. Chem. Rev. 2014, 114, 5379. doi: 10.1021/cr300471v  doi: 10.1021/cr300471v

    20. [20]

      Ottosson, H. Nat. Chem. 2012, 4, 969. doi: 10.1038/nchem.1518  doi: 10.1038/nchem.1518

    21. [21]

      Liew, J. Y.; Brown, J. J.; Moore, E. G.; Schwalbe, M. Chem. -Eur. J. 2016, 22, 16178. doi: 10.1002/chem.201602189  doi: 10.1002/chem.201602189

    22. [22]

      Naskar, S.; Das, M. ACS Omega 2017, 2, 1795. doi: 10.1021/acsomega.7b00278  doi: 10.1021/acsomega.7b00278

    23. [23]

      van Leeuwen, T.; Pol, J.; Roke, D.; Wezenberg, S. J.; Feringa, B. L. Org. Lett. 2017, 19, 1402. doi: 10.1021/acs.orglett.7b00317  doi: 10.1021/acs.orglett.7b00317

    24. [24]

      Feixas, F.; Matito, E.; Poater, J.; Solà, M. WIREs: Comput. Mol. Sci. 2013, 3, 105. doi: 10.1002/wcms.1115  doi: 10.1002/wcms.1115

    25. [25]

      Bühl, M.; Hirsch, A. Chem. Rev. 2001, 101, 1153. doi: 10.1021/cr990332q  doi: 10.1021/cr990332q

    26. [26]

      El Bakouri, O.; Duran, M.; Poater, J.; Feixas, F.; Sola, M. Phys. Chem. Chem. Phys. 2016, 18, 11700. doi: 10.1039/C5CP07011B  doi: 10.1039/C5CP07011B

    27. [27]

      Zhu, C. Q.; Yang, C. X.; Wang, Y. H.; Lin, G.; Yang, Y. H.; Wang, X. Y.; Zhu, J.; Chen, X. Y.; Lu, X.; Liu, G.; et al. Sci. Adv. 2016, 2, e1601031. doi: 10.1126/sciadv.1601031  doi: 10.1126/sciadv.1601031

    28. [28]

      Ayub, R.; Bakouri, O. E.; Jorner, K.; Solà, M.; Ottosson, H. J. Org. Chem. 2017, 82, 6327. doi: 10.1021/acs.joc.7b00906  doi: 10.1021/acs.joc.7b00906

    29. [29]

      Suzuki, S.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. J. Am. Chem. Soc. 2006, 128, 2530. doi: 10.1021/ja058387z  doi: 10.1021/ja058387z

    30. [30]

      Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; von Ragué Schleyer, P. Chem. Rev. 2005, 105, 3842. doi: 10.1021/cr030088+  doi: 10.1021/cr030088+

    31. [31]

      Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. doi: 10.1021/ja960582d  doi: 10.1021/ja960582d

    32. [32]

      Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Org. Lett. 2006, 8, 863. doi: 10.1021/ol0529546  doi: 10.1021/ol0529546

    33. [33]

      Krygowski, T. M.; Szatylowicz, H.; Stasyuk, O. A.; Dominikowska, J.; Palusiak, M. Chem. Rev. 2014, 114, 6383. doi: 10.1021/cr400252h  doi: 10.1021/cr400252h

    34. [34]

      Poater, J.; Fradera, X.; Duran, M.; Solà, M. Chem. -Eur. J. 2003, 9, 400. doi: 10.1002/chem.200390041  doi: 10.1002/chem.200390041

    35. [35]

      Matito, E.; Duran, M.; Solà, M. J. Chem. Phys. 2005, 122, 014109. doi: 10.1063/1.1824895  doi: 10.1063/1.1824895

    36. [36]

      Hong, Y.; Oh, J.; Sung, Y. M.; Tanaka, Y.; Osuka, A.; Kim, D. Angew. Chem. Int. Ed. 2017, 56, 2932. doi: 10.1002/anie.201611431  doi: 10.1002/anie.201611431

    37. [37]

      Feixas, F.; Matito, E.; Poater, J.; Solà, M. J. Comput. Chem. 2008, 29, 1543. doi: 10.1002/jcc.20914  doi: 10.1002/jcc.20914

    38. [38]

      Yu, D. H.; Rong, C. Y.; Lu, T.; Chattaraj, P. K.; De Proft, F.; Liu, S. B. Phys. Chem. Chem. Phys. 2017, 19, 18635. doi: 10.1039/C7CP03544F  doi: 10.1039/C7CP03544F

    39. [39]

      Liu, S. B. Acta Phys. -Chim. Sin. 2016, 32, 98. doi: 10.3866/PKU.WHXB201510302  doi: 10.3866/PKU.WHXB201510302

    40. [40]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    41. [41]

      Zhao, L. L.; Grande-Aztatzi, R.; Foroutan-Nejad, C.; Ugalde, J. M.; Frenking, G. ChemistrySelect 2017, 2, 863. doi: 10.1002/slct.201602080  doi: 10.1002/slct.201602080

    42. [42]

      Ciesielski, A.; Krygowski, T. M.; Cyranski, M. K.; Balaban, A. T. Phys. Chem. Chem. Phys. 2011, 13, 3737. doi: 10.1039/C0CP01446J  doi: 10.1039/C0CP01446J

    43. [43]

      Bernasconi, C. F.; Wenzel, P. J. J. Org. Chem. 2010, 75, 8422. doi: 10.1021/jo101719z  doi: 10.1021/jo101719z

    44. [44]

      Mo, Y. R.; Schleyer, P. v. R. Chem. -Eur. J. 2006, 12, 2009. doi: 10.1002/chem.200500376  doi: 10.1002/chem.200500376

    45. [45]

      Gershoni-Poranne, R.; Stanger, A. Chem. Soc. Rev. 2015, 44, 6597. doi: 10.1039/C5CS00114E  doi: 10.1039/C5CS00114E

    46. [46]

      De Oliveira, B. G. Phys. Chem. Chem. Phys. 2013, 15, 37. doi: 10.1039/C2CP41749A  doi: 10.1039/C2CP41749A

    47. [47]

      Zhu, J.; An, K.; Schleyer, P. v. R. Org. Lett. 2013, 15, 2442. doi: 10.1021/ol400908z  doi: 10.1021/ol400908z

    48. [48]

      Cyrañski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. J. Org. Chem. 2002, 67, 1333. doi: 10.1021/jo016255s  doi: 10.1021/jo016255s

    49. [49]

      Krygowski, T. M.; Cyrański, M. K. Chem. Rev. 2001, 101, 1385. doi: 10.1021/cr990326u  doi: 10.1021/cr990326u

    50. [50]

      Alvarez-Thon, L.; Mammino, L. Int. J. Quantum Chem. 2017, 117, e25382. doi: 10.1002/qua.25382  doi: 10.1002/qua.25382

    51. [51]

      Karadakov, P. B.; Hearnshaw, P.; Horner, K. E. J. Org. Chem. 2016, 81, 11346. doi: 10.1021/acs.joc.6b02460  doi: 10.1021/acs.joc.6b02460

    52. [52]

      Boll, M.; Hilker, T. A.; Salomon, G.; Omran, A.; Nespolo, J.; Pollet, L.; Bloch, I.; Gross, C. Science 2016, 353, 1257. doi: 10.1126/science.aag1635  doi: 10.1126/science.aag1635

    53. [53]

      Sundholm, D.; Fliegl, H.; Berger, R. J. F. WIREs: Comput. Mol. Sci. 2016, 6, 639. doi: 10.1002/wcms.1270  doi: 10.1002/wcms.1270

    54. [54]

      Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244  doi: 10.1063/1.2741244

    55. [55]

      Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 2057. doi: 10.3866/PKU.WHXB201509183  doi: 10.3866/PKU.WHXB201509183

    56. [56]

      Noorizadeh, S.; Shakerzadeh, E. Comput. Theor. Chem. 2011, 964, 141. doi: 10.1016/j.comptc.2010.12.012  doi: 10.1016/j.comptc.2010.12.012

    57. [57]

      Möllerstedt, H.; Piqueras, M. C.; Crespo, R.; Ottosson, H. J. Am. Chem. Soc. 2004, 126, 13938. doi: 10.1021/ja045729c  doi: 10.1021/ja045729c

    58. [58]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: org/10.1063/1.464913  doi: 10.1063/1.464913

    59. [59]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    60. [60]

      Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. doi: 10.1063/1.444267  doi: 10.1063/1.444267

    61. [61]

      Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976. doi: 10.1002/jcc.1058  doi: 10.1002/jcc.1058

    62. [62]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision E. 01; Gaussian Inc.: Wallingford, CT, USA, 2013.

    63. [63]

      Kudin, K. N.; Scuseria, G. E.; Cancès, E. J. Chem. Phys. 2002, 116, 8255. doi: 10.1063/1.1470195  doi: 10.1063/1.1470195

    64. [64]

      Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

    65. [65]

      Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033  doi: 10.1063/1.454033

    66. [66]

      Richard, F.; Bader, R. Atoms in Molecules: a Quantum Theory; Oxford University Press, Oxford, UK, 1990.

    67. [67]

      Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129. doi: 10.1007/bf00549096  doi: 10.1007/bf00549096

    68. [68]

      Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30, 2055. doi: 10.3866/PKU.WHXB201409193  doi: 10.3866/PKU.WHXB201409193

    69. [69]

      Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443  doi: 10.1021/acs.jpca.5b00443

    70. [70]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133  doi: 10.1103/PhysRev.140.A1133

    71. [71]

      Zhao, D. B.; Rong, C. Y.; Ying, D. L.; Liu, S. B. J. Theor. Comput. Chem. 2013, 12, 1350034. doi: 10.1142/s021963361350034x  doi: 10.1142/s021963361350034x

    72. [72]

      Wu, W. J.; Wu, Z. M.; Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216. doi: 10.1021/acs.jpca.5b04309  doi: 10.1021/acs.jpca.5b04309

    73. [73]

      Wu, Z. M.; Rong, C. Y.; Lu, T.; Ayers, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052. doi: 10.1039/C5CP04442A  doi: 10.1039/C5CP04442A

    74. [74]

      Huang, Y.; Rong, C. Y.; Zhang, R. Q.; Liu, S. B. J. Mol. Model. 2016, 23, 3. doi: 10.1007/s00894-016-3175-x  doi: 10.1007/s00894-016-3175-x

    75. [75]

      Liu, S. B.; Rong, C. Y.; Lu, T. Phys. Chem. Chem. Phys. 2017, 19, 1496. doi: 10.1039/C6CP06376D  doi: 10.1039/C6CP06376D

    76. [76]

      Zhou, X. Y.; Rong, C. Y.; Lu, T.; Zhou, P. P.; Liu, S. B. J. Phys. Chem. A 2016, 120, 3634. doi: 10.1021/acs.jpca.6b01197  doi: 10.1021/acs.jpca.6b01197

    77. [77]

      Noorizadeh, S.; Shakerzadeh, E. Phys. Chem. Chem. Phys. 2010, 12, 4742. doi: 10.1039/B916509F  doi: 10.1039/B916509F

    78. [78]

      Snyder, G. J. J. Phys. Chem. A 2012, 116, 5272. doi: 10.1021/jp304015k  doi: 10.1021/jp304015k

    79. [79]

      Halton, B. Eur. J. Org. Chem. 2005, 2005, 3391. doi: 10.1002/ejoc.200500231  doi: 10.1002/ejoc.200500231

  • 加载中
    1. [1]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    4. [4]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    5. [5]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    6. [6]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    7. [7]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    8. [8]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    9. [9]

      Huijiao FuPeiqin LiangQianwen ChenYan WangGuang LiXuzi CaiShengtao WangKun ChenShengying ShiZhiqiang YuXuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241

    10. [10]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    11. [11]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    12. [12]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    13. [13]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    14. [14]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    15. [15]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    16. [16]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    19. [19]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    20. [20]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

Metrics
  • PDF Downloads(20)
  • Abstract views(515)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return