Citation: LI Shaohai, WENG Bo, LU Kangqiang, XU Yijun. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 708-718. doi: 10.3866/PKU.WHXB201710162 shu

Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification

  • Corresponding author: XU Yijun, yjxu@fzu.edu.cn
  • Received Date: 27 July 2017
    Revised Date: 10 October 2017
    Accepted Date: 11 October 2017
    Available Online: 16 June 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (U1463204, 21173045), the Award Program for Minjiang Scholar Professorship, China, the Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Rolling Grant, China (2017J07002), the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment, China (2014A05), the 1st Program of Fujian Province for Top Creative Young Talents, the Open Research Project of State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University, China (201519), and the Program for Returned High-Level Overseas Chinese Scholars of Fujian Province, Chinathe 1st Program of Fujian Province for Top Creative Young Talents, the Open Research Project of State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University, China 201519The project was supported by the National Natural Science Foundation of China U1463204the Award Program for Minjiang Scholar Professorship, China, the Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Rolling Grant, China 2017J07002The project was supported by the National Natural Science Foundation of China 21173045the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment, China 2014A05

  • Carbon quantum dots (CQDs) are emerging as the new-generation light absorber for solar energy conversion. However, the low photosensitization efficiency of CQDs is one of the current bottlenecks impeding their large-scale practical applications in photocatalysis. Therefore, developing a facile approach for the engineering and functionalization of CQDs-based composites to improve the photosensitization efficiency of CQDs is highly desirable. On account of the abundant functional groups, especially oxygen-containing functional groups such as carbonyl, carboxyl, and hydroxyl present on their surface, CQDs can be readily combined with various organic molecules or polymers as a surface passivation component to reduce the nonradioactive surface recombination of photo-generated charge carriers, thus enabling the CQDs to exhibit strong photoluminescence in the visible and near-infrared spectral regions. Consequently, polymer passivation has been demonstrated as an ideal strategy to make it accessible for improving the sensitization efficiency of CQDs in photocatalytic applications. Branched polyethylenimine (BPEI) is one of polymers that contains a high density of amine groups and exhibits high electron mobility, which can be used as an electron injection material at the interface of nanomaterials. Besides, the BPEI polymer with amino groups exhibiting positive charge has been utilized for designing heterogeneous catalysts by an electrostatic self-assembly strategy. Therefore, BPEI is expected to modify the surface of inorganic oxides semiconductor to enhance the photosensitization efficiency of CQDs under visible light. However, to date, the study in this regard has been still unavailable. In this work, we developed a facile approach to engineer well-distributed CQDs via electrostatic interaction on BPEI passivated TiO2 composites (BTC) as photocatalysts. The BTC composites with an optimal loading of 5% (w, mass fraction) CQDs outperformed the TiO2/CQDs (TC) composite and referential BPEI/SiO2/CQDs (BSC) composites for the photoreduction of 4-nitroaniline under visible light irradiation. The structure of the fabricated BTC composites was systematically investigated by the combined use of structural and spectral characterizations, demonstrating that the photosensitizer CQDs contacted well with the BPEI modified TiO2 nanoparticles. The comparison characterizations revealed that BPEI facilitated the dissociation and transfer of excitons as an electron transfer channel. The as-prepared BTC composites benefited from the favorable interfacial contact and effective transfer of photo-generated charge carriers, and thus manifested superior photocatalytic activity to the TC composite. It is expected that this strategy would be extended to other wide band gap semiconductor photocatalyst systems and open up new possibilities in designing efficient CQDs-based semiconductor artificial light harvesting systems by interfacial optimization.
  • 加载中
    1. [1]

      Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362. doi: 10.1039/C4CS00269E  doi: 10.1039/C4CS00269E

    2. [2]

      Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. ACS Nano2011, 5, 7426. doi: 10.1021/nn202519j  doi: 10.1021/nn202519j

    3. [3]

      Li, H.; Sun, C.; Ali, M.; Zhou, F.; Zhang, X.; MacFarlane, D. R. Angew. Chem. Int. Ed. 2015, 54, 8420. doi: 10.1002/anie.201501698  doi: 10.1002/anie.201501698

    4. [4]

      Di, J.; Xia, J.; Ge, Y.; Li, H.; Ji, H.; Xu, H.; Zhang, Q.; Li, H.; Li, M. Appl. Catal. B 2015, 168169, 51. doi: 10.1016/j.apcatb.2014.11.057  doi: 10.1016/j.apcatb.2014.11.057

    5. [5]

      Fang, S.; Xia, Y.; Lv, K.; Li, Q.; Sun, J.; Li, M. Appl. Catal. B 2016, 185, 225. doi: 10.1016/j.apcatb.2015.12.025  doi: 10.1016/j.apcatb.2015.12.025

    6. [6]

      Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z. J. Mater. Chem. 2012, 22, 10501. doi: 10.1039/C2JM30703K  doi: 10.1039/C2JM30703K

    7. [7]

      Xia, J.; Di, J.; Li, H.; Xu, H.; Li, H.; Guo, S. Appl. Catal. B 2016, 181, 260. doi: 10.1016/j.apcatb.2015.07.035  doi: 10.1016/j.apcatb.2015.07.035

    8. [8]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351. doi: 10.1016/j.nantod.2016.05.008  doi: 10.1016/j.nantod.2016.05.008

    9. [9]

      Tang, Q.; Zhu, W.; He, B.; Yang, P. ACS Nano 2017, 11, 1540. doi: 10.1021/acsnano.6b06867  doi: 10.1021/acsnano.6b06867

    10. [10]

      Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T. Adv. Mater. 2016, 28, 9454. doi: 10.1002/adma.201602581  doi: 10.1002/adma.201602581

    11. [11]

      Di, J.; Xia, J.; Ji, M.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z.; Li, H. ACS Appl. Mater. Interfaces 2015, 7, 20111. doi: 10.1021/acsami.5b05268  doi: 10.1021/acsami.5b05268

    12. [12]

      Yu, S.; Lee, S. Y.; Umh, H. N.; Yi, J. Nano Energy 2016, 26, 479. doi: 10.1016/j.nanoen.2016.06.008  doi: 10.1016/j.nanoen.2016.06.008

    13. [13]

      Jiang, K.; Zhang, L.; Lu, J.; Xu, C.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2016, 55, 7231. doi: 10.1002/anie.201603822  doi: 10.1002/anie.201603822

    14. [14]

      Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Chem. Soc. Rev. 2017, doi: 10.1039/C7CS00235A  doi: 10.1039/C7CS00235A

    15. [15]

      Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Angew. Chem. Int. Ed. 2010, 49, 4430. doi: 10.1002/anie.200906154  doi: 10.1002/anie.200906154

    16. [16]

      Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. J. Am. Chem. Soc. 2015, 137, 6018. doi: 10.1021/jacs.5b01650  doi: 10.1021/jacs.5b01650

    17. [17]

      Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. J. Mater. Chem. A 2014, 2, 3344. doi: 10.1039/C3TA14108J  doi: 10.1039/C3TA14108J

    18. [18]

      Yu, X.; Liu, J.; Yu, Y.; Zuo, S.; Li, B. Carbon 2014, 68, 718. doi: 10.1016/j.carbon.2013.11.053  doi: 10.1016/j.carbon.2013.11.053

    19. [19]

      Hou, J.; Cheng, H.; Yang, C.; Takeda, O.; Zhu, H. Nano Energy 2015, 18, 143. doi: 10.1016/j.nanoen.2015.09.005  doi: 10.1016/j.nanoen.2015.09.005

    20. [20]

      Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Adv. Mater. 2016, 28, 6781. doi: 10.1002/adma.201600305  doi: 10.1002/adma.201600305

    21. [21]

      Wang, R.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J. J. Mater. Chem. A 2017, 5, 3717. doi: 10.1039/C6TA08660H  doi: 10.1039/C6TA08660H

    22. [22]

      Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; et al. J. Am. Chem. Soc. 2006, 128, 7756. doi: 10.1021/ja062677d  doi: 10.1021/ja062677d

    23. [23]

      Ding, C.; Zhu, A.; Tian, Y. Acc. Chem. Res. 2014, 47, 20. doi: 10.1021/ar400023s  doi: 10.1021/ar400023s

    24. [24]

      Baker, S. N.; Baker, G. A. Angew. Chem. Int. Ed. 2010, 49, 6726. doi: 10.1002/anie.200906623  doi: 10.1002/anie.200906623

    25. [25]

      Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. J. Am. Chem. Soc. 2011, 133, 4754. doi: 10.1021/ja200804h  doi: 10.1021/ja200804h

    26. [26]

      Dong, Y.; Wang, R.; Li, H.; Shao, J.; Chi, Y.; Lin, X.; Chen, G. Carbon 2012, 50, 2810. doi: 10.1016/j.carbon.2012.02.046  doi: 10.1016/j.carbon.2012.02.046

    27. [27]

      Xu, X.; Bao, Z.; Zhou, G.; Zeng, H.; Hu, J. ACS Appl. Mater. Interfaces 2016, 8, 14118. doi: 10.1021/acsami.6b02961  doi: 10.1021/acsami.6b02961

    28. [28]

      Kurniasih, I. N.; Keilitz, J.; Haag, R. Chem. Soc. Rev. 2015, 44, 4145. doi: 10.1039/C4CS00333K  doi: 10.1039/C4CS00333K

    29. [29]

      Kim, Y. H.; Han, T. H.; Cho, H.; Min, S. Y.; Lee, C. L.; Lee, T. W. Adv. Funct. Mater.2014, 24, 3808. doi: 10.1002/adfm.201304163  doi: 10.1002/adfm.201304163

    30. [30]

      Stolz, S.; Scherer, M.; Mankel, E.; Lovrinčić, R.; Schinke, J.; Kowalsky, W.; Jaegermann, W.; Lemmer, U.; Mechau, N.; Hernandez-Sosa, G. ACS Appl. Mater. Interfaces 2014, 6, 6616. doi: 10.1021/am500287y  doi: 10.1021/am500287y

    31. [31]

      Huang, W.; Zeng, L.; Yu, X.; Guo, P.; Wang, B.; Ma, Q.; Chang, R. P. H.; Yu, J.; Bedzyk, M. J.; Marks, T. J.; et al. Adv. Funct. Mater. 2016, 26, 6179. doi: 10.1002/adfm.201602069  doi: 10.1002/adfm.201602069

    32. [32]

      Yuan, L.; Yang, M. Q.; Xu, Y. J. Nanoscale 2014, 6, 6335. doi: 10.1039/C4NR00116H  doi: 10.1039/C4NR00116H

    33. [33]

      Weng, B.; Wu, J.; Zhang, N.; Xu, Y. J. Langmuir 2014, 30, 5574. doi: 10.1021/la4048566  doi: 10.1021/la4048566

    34. [34]

      Lv, Z.; Yang, X.; Wang, E. Nanoscale 2013, 5, 663. doi: 10.1039/C2NR33395C  doi: 10.1039/C2NR33395C

    35. [35]

      St ber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62. doi: 10.1016/0021-9797[68]90272-5  doi: 10.1016/0021-9797[68]90272-5

    36. [36]

      Liu, S.; Xu, Y. J. Nanoscale 2013, 5, 9330. doi: 10.1039/C3NR02682E  doi: 10.1039/C3NR02682E

    37. [37]

      Guo, C. X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X. Chem. Commun. 2014, 50, 7318. doi: 10.1039/C4CC01603C  doi: 10.1039/C4CC01603C

    38. [38]

      Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H.Adv. Funct. Mater. 2015, 25, 1616. doi: 10.1002/adfm.201501250  doi: 10.1002/adfm.201501250

    39. [39]

      Zhang, Y. Q.; Ma, D. K.; Zhang, Y. G.; Chen, W.; Huang, S. M. Nano Energy 2013, 2, 545. doi: 10.1016/j.nanoen.2013.07.010  doi: 10.1016/j.nanoen.2013.07.010

    40. [40]

      Heinzmann, C.; Weder, C.; de Espinosa, L. M. Chem. Soc. Rev. 2016, 45, 342. doi: 10.1039/C5CS00477B  doi: 10.1039/C5CS00477B

    41. [41]

      Guan, B. Y.; Yu, L.; Li, J.; Lou, X. W. Sci. Adv. 2016, 2, e1501554. doi: 10.1126/sciadv.1501554  doi: 10.1126/sciadv.1501554

    42. [42]

      Nabid, M. R.; Bide, Y.; Shojaipour, M.; Dastar, F. Catal. Lett. 2015, 146, 229. doi: 10.1007/s10562-015-1637-x  doi: 10.1007/s10562-015-1637-x

    43. [43]

      Nakayama, N.; Hayashi, T. Colloids Surf. A 2008, 317, 543. doi: 10.1016/j.colsurfa.2007.11.036  doi: 10.1016/j.colsurfa.2007.11.036

    44. [44]

      Kretschmer, F.; Mansfeld, U.; Hoeppener, S.; Hager, M. D.; Schubert, U. S. Chem. Commun. 2014, 50, 88. doi: 10.1039/C3CC45090B  doi: 10.1039/C3CC45090B

    45. [45]

      Weng, Y.; Jiang, B.; Yang, K.; Sui, Z.; Zhang, L.; Zhang, Y. Nanoscale 2015, 7, 14284. doi: 10.1039/C5NR03370E  doi: 10.1039/C5NR03370E

    46. [46]

      Tripp, S.; Appelhans, D.; Striegler, C.; Voit, B. Chem. -Eur. J. 2014, 20, 8314. doi: 10.1002/chem.201402147  doi: 10.1002/chem.201402147

    47. [47]

      Nethravathi, C.; Nisha, T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M. Carbon2009, 47, 2054. doi: 10.1016/j.carbon.2009.03.055  doi: 10.1016/j.carbon.2009.03.055

    48. [48]

      Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Adv. Mater. 2016, 28, 4632. doi: 10.1002/adma.201600058  doi: 10.1002/adma.201600058

    49. [49]

      Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Chichester, UK, 2004; pp. 1–347.
       

    50. [50]

      Dhenadhayalan, N.; Lin, K. C.; Suresh, R.; Ramamurthy, P. J. Phys. Chem. C 2016, 120, 1252. doi: 10.1021/acs.jpcc.5b08516  doi: 10.1021/acs.jpcc.5b08516

    51. [51]

      Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. ACS Nano 2012, 6, 9777. doi: 10.1021/nn304154s  doi: 10.1021/nn304154s

    52. [52]

      Yang, P.; Zhao, J.; Wang, J.; Cao, B.; Li, L.; Zhu, Z. J. Mater. Chem. A 2015, 3, 8256. doi: 10.1039/C5TA00657K  doi: 10.1039/C5TA00657K

    53. [53]

      Wang, M.; Zheng, B.; Yang, F.; Du, J.; Guo, Y.; Dai, J.; Yan, L.; Xiao, D. Analyst 2016, 141, 2508. doi: 10.1039/C5AN02643A  doi: 10.1039/C5AN02643A

    54. [54]

      Hu, S.; Tian, R.; Wu, L.; Zhao, Q.; Yang, J.; Liu, J.; Cao, S.Chem. -Asian J. 2013, 8, 1035. doi: 10.1002/asia.201300076  doi: 10.1002/asia.201300076

    55. [55]

      Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.; Durrant, J. R.; Reisner, E. Angew. Chem. Int. Ed. 2017, 56, 1. doi: 10.1002/anie.201700949  doi: 10.1002/anie.201700949

    56. [56]

      Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. J. Mater. Chem. A 2017, 5, 3230. doi: 10.1039/C6TA08310B  doi: 10.1039/C6TA08310B

    57. [57]

      Xiao, F. X.; Miao, J.; Liu, B. J. Am. Chem. Soc. 2014, 136, 1559. doi: 10.1021/ja411651e  doi: 10.1021/ja411651e

    58. [58]

      Ahn, K. S.; Yan, Y.; Shet, S.; Jones, K.; Deutsch, T.; Turner, J.; Al-Jassim, M. Appl. Phys. Lett. 2008, 93, 163117. doi: 10.1063/1.3002282  doi: 10.1063/1.3002282

    59. [59]

      Messina, F.; Sciortino, L.; Buscarino, G.; Agnello, S.; Gelardi, F.; Cannas, M. Mater. Today 2016, 3[Suppl. 2], S258. doi: 10.1016/j.matpr.2016.02.043  doi: 10.1016/j.matpr.2016.02.043

    60. [60]

      Shinji, H.; Masahide, K.; Keiichi, Y. Jpn. J. Appl. Phys. 1993, 32, L274.  doi: 10.1143/JJAP.32.L274

    61. [61]

      Zhang, N.; Han, C.; Xu, Y. J.; Foley Iv, J. J.; Zhang, D.; Codrington, J.; Gray, S. K.; Sun, Y. Nat. Photon. 2016, 10, 473. doi: 10.1038/nphoton.2016.76  doi: 10.1038/nphoton.2016.76

    62. [62]

      Lai, C. W.; Hsiao, Y. H.; Peng, Y. K.; Chou, P. T. J. Mater. Chem. 2012, 22, 14403. doi: 10.1039/C2JM32206D  doi: 10.1039/C2JM32206D

    63. [63]

      Tian, B.; Li, Z.; Zhen, W.; Lu, G. J. Phys. Chem. C 2016, 120, 6409. doi: 10.1021/acs.jpcc.6b00680  doi: 10.1021/acs.jpcc.6b00680

  • 加载中
    1. [1]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    4. [4]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    8. [8]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    11. [11]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    14. [14]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    15. [15]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    16. [16]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    19. [19]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    20. [20]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

Metrics
  • PDF Downloads(7)
  • Abstract views(187)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return