Citation: SUN Guodong, KANG Xi, JIN Shan, LI Xiaowu, HU Daqiao, WANG Shuxin, ZHU Manzhou. Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol)[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 799-804. doi: 10.3866/PKU.WHXB201710124 shu

Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol)

  • Corresponding author: HU Daqiao, hudaqiao@ahu.edu.cn WANG Shuxin, ixing@ahu.edu.cn ZHU Manzhou, zmz@ahu.edu.cn
  • Received Date: 12 September 2017
    Revised Date: 2 October 2017
    Accepted Date: 9 October 2017
    Available Online: 12 July 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21372006, U1532141, 21631001, 21602002)the National Natural Science Foundation of China 21602002the National Natural Science Foundation of China 21631001the National Natural Science Foundation of China 21372006the National Natural Science Foundation of China U1532141

  • Atomically precise pieces of metallic matter with nanometer dimensions, which are called nanoclusters, have attracted special research interest as a frontier in nanoscience research. These nanoclusters exhibit unique properties that make them suitable for widespread applications in fields like medical treatments and catalysis. Studies in nanoclusters have been greatly benefited from the use of advanced instrumentation, especially adaptation of mass spectrometry (e.g., matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization mass spectrometry (ESI MS)). However, mass spectrometry could not elucidate the bonding between metals and ligands; therefore, single-crystal X-ray diffraction (SC-XRD) analysis has been used. SC-XRD is significant for the development of the nanocluster range in terms of revealing the precise structure of nanoclusters and fully understanding the structure-property relationship. Furthermore, understanding the nature of nanocluster surface has provided possibility to embellish nanocluster surface and to improve their performance. Nowadays, alloy nanoclusters play an important role in catalysis, biology, and materials science. Researchers have synthesized and predicted the alloy structure composed of silver and nickel in ultra-small size (Ag4Ni2(DMSA)4, (DMSA = meso-2, 3-dimercaptosuccinic acid)). However, no precise crystal structure has been reported. Herein, we report the crystal structure of the Ag-Ni alloy nanocluster Ag4Ni2(SPhMe2)8. The structure was further confirmed by SC-XRD, X-ray photoelectron spectroscopy (XPS), MALDI-TOF MS, ESI MS and thermo gravimetric analysis (TGA) measurements. The stability experiment suggested that the Ag4Ni2 nanocluster could be stable in ultra-small sizes. This research on Ag-Ni alloy nanoclusters will contribute to the understanding of the alloy in ultra-small sizes. Specifically, based on the structure determination by SC-XRD, the structure of Ag4Ni2(SPhMe2)8 could be divided into three layers: upper and lower layers with Ni(SPhMe2)4 complexes constituting a parallelogram, and the middle layer with four silver atoms constituting a parallelogram like a sandwich. The Ag―Ni, Ag―S and Ni―S bond distances were 0.31–0.32, 0.23–0.24, and 0.22–0.23 nm, respectively. XPS analyses revealed that the Ag/Ni/S atomic ratio was 5.19/2.55/10.28, consistent with the corresponding expected ratio of 4/2/8 in Ag4Ni2(SPhMe2)8. In addition, the Ag 3d3/2 and Ag 3d5/2 binding energy peaks were located at 375.0 and 369.0 eV, respectively, and the Ni 2p1/2 and Ni 2p3/2 are located at 871.50 and 853.90 eV, respectively. Moreover, combined with ESI, the Ag 3d3/2 and Ag 3d5/2 binding energies of Ag4Ni2(SPhMe2)8 were close to the +1 valences, according to previous reports. Meanwhile, the spectra of Ag4Ni2(SPhMe2)8 illustrated that the valence of nickel was +2. Additionally, the MALDI-TOF mass spectrum was in good agreement with the ESI results. Weight loss upon heating was used to confirm the percentage of organic material in nanoclusters (66.31% weight loss was observed in TGA, consistent with the 66.67% loss calculated according to the formula). In the liquid state, the UV-Vis spectra showed no change after exposure to oxygen for a few weeks. Meanwhile, we used UV-Vis spectroscopy at temperatures under 80 ℃ to test the stability of the Ag4Ni2(SPhMe2)8. The absorption peaks were almost identical with each other, suggesting high stability of the Ag4Ni2(SPhMe2)8. Our study proves that small-sized alloy also has the possibility of diversification, which will play an important role in the synthesis of alloy nanoclusters. Moreover, this research on Ag-Ni alloy nanoclusters will contribute to the understanding of alloys in ultra-small sizes.
  • 加载中
    1. [1]

      Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769

    2. [2]

      Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S.; Balasubramanian. K.; Pradeep, T. Angew. Chem. Int. Ed. 2012, 51, 2155. doi: 10.1002/anie.201107696

    3. [3]

      Wang, Q.; Lin, Y.; Liu, K. Acc. Chem. Res. 2015, 48, 1570. doi: 10.1021/acs.accounts.5b00007

    4. [4]

      Wang, Y.; Wan, X.; Ren, L.; Su, H.; Li, G.; Malola, S.; Teo, B.; Wang, Q.; Zheng, N. J. Am. Chem. Soc. 2016, 138, 3278. doi: 10.1021/jacs.5b12730

    5. [5]

      Fan, J.; Song, Y.; Chai, J.; Yang, S.; Chen, T.; Rao, B.; Yu, H.; Zhu, M. Nanoscale 2016, 8, 15317. doi: 10.1039/c6nr04255d

    6. [6]

      Zeng, J.; Guan, Z.; Du, Y.; Nan, Z.; Lin, Y.; Wang, Q. J. Am. Chem. Soc. 2016, 138, 7848. doi: 10.1021/jacs.6b04471

    7. [7]

      Wang, Y.; Su, H.; Xu, C.; Li, G.; Gell, L.; Lin, S.; Häkkinen, H.; Zheng, N. J. Am. Chem. Soc. 2015, 137, 4324. doi: 10.1021/jacs.5b01232

    8. [8]

      Bootharaju, M.; Joshi, C.; Bakr, O. Angew. Chem. Int. Ed. 2016, 55, 922. doi: 10.1002/anie.201509381.  doi: 10.1002/anie.201509381

    9. [9]

      Luo, Z.; Zheng, K.; Xie, J. Chem. Commun. 2014, 50, 5143. doi: 10.1039/c3cc47512c.  doi: 10.1039/c3cc47512c

    10. [10]

      Yang, J. L. Acta Phys. -Chim. Sin. 2017, 33, 1273.  doi: 10.3866/PKU.WHXB201704262

    11. [11]

      Yamazoe, S.; Koyasu, K.; Tsukuda, T. Chem. Res. 2014, 47, 816. doi: 10.1021/ar400209a  doi: 10.1021/ar400209a

    12. [12]

      Wang, S.; Yu, H.; Zhu, M. Sci. China Chem. 2016, 59, 2. doi: 10.1007/s11426-015-5484-9  doi: 10.1007/s11426-015-5484-9

    13. [13]

      Wu, Z. K. Acta Phys. -Chim. Sin. 2017, 33, 1930.  doi: 10.3866/PKU.WHXB201706026

    14. [14]

      Kagalwala, H.; Gottlieb, E.; Li, G.; Li, T.; Jin, R.; Bernhard, S. Inorg. Chem. 2013, 52, 9094. doi: 10.1021/ic4013069  doi: 10.1021/ic4013069

    15. [15]

      Wang, S.; Meng, X.; Das, A.; Li, T.; Song, Y.; Zhu, T.; Zhu, M.; Jin, R. Angew. Chem. Int. Ed. 2014, 53, 2376. doi: 10.1002/anie.201307480

    16. [16]

      Song, Y.; Wang, S.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H.; Zhu, M. J. Am. Chem. Soc. 2014, 136, 2963. doi: 10.1021/ja4131142

    17. [17]

      Yang, S.; Chai, J.; Song, Y.; Kang, X.; Sheng, H.; Chong, H.; Zhu, M. J. Am. Chem. Soc. 2015, 137, 10033. doi: 10.1021/jacs.5b06235

    18. [18]

      Wong, M. H.; Giraldo, J. P.; Kwak, S. Y.; Koman, V. B.; Sinclair, R.; Lew, T. T. S.; Bisker, G.; Liu, P. W.; Strano, M. S. Nat. Mater. 2016, 16, 264. doi: 10.1038/nmat4771  doi: 10.1038/nmat4771

    19. [19]

      Yu, W. L.; Zuo, H. W.; Lu, C. H.; Li, Y.; Zhang, Y. F.; Chen, W. K. Acta Phys.-Chim. Sin. 2015, 31, 425.  doi: 10.3866/PKU.WHXB201501191

    20. [20]

      Barrabés, N.; Zhang, B.; Bürgi, T. J. Am. Chem. Soc. 2014, 136, 14361. doi: 10.1021/ja507189v

    21. [21]

      Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasab, T.; Nobusada, K. Phys. Chem. Chem. Phys. 2010, 12, 6219. doi: 10.1039/b927175a

    22. [22]

      Qian, H.; Jiang, D.; Li, G.; Gayathri, C.; Das, A.; Gil, R.; Jin, R. J. Am. Chem. Soc. 2012, 134, 16159. doi: 10.1021/ja307657a  doi: 10.1021/ja307657a

    23. [23]

      Yang, H.; Wang, Y.; Yan, J.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. J. Am. Chem. Soc. 2014, 136, 7197. doi: 10.1021/ja501811j

    24. [24]

      Yang, H.; Wang, Y.; Lei, J.; Shi, L.; Wu, X.; Zheng, N. J. Am. Chem. Soc. 2013, 135, 9568. doi: 10.1021/ja402249s

    25. [25]

      Kazan, R.; Zhang, B.; Bürgi, T. Dalton Trans. 2017, 46, 7708. doi: 10.1039/c7dt00955k

    26. [26]

      Wan, X.; Cheng, X.; Tang, Q.; Han, Y.; Hu, G.; Jiang, D.; Wang, Q. J. Am. Chem. Soc. 2017, 139, 9451. doi: 10.1021/jacs.7b04622

    27. [27]

      Yan, J.; Su, H.; Yang, H.; Yang, H.; Malola, S.; Zheng, N. J. Am. Chem. Soc.2015, 137, 11880. doi: 10.1021/jacs.5b07186  doi: 10.1021/jacs.5b07186

    28. [28]

      Liu, X.; Yuan, J.; Yao, C.; Chen, J.; Li, L.; Bao, X.; Yang, J.; Wu, Z. J. Phys. Chem. C. 2017, 121, 13848. doi: 10.1021/acs.jpcc.7b01730

    29. [29]

      Kang, X.; Zhou, M.; Wang, S.; Jin, S.; Sun, G.; Zhu, M.; Jin, R. Chem. Sci. 2017, 8, 2581. doi: 10.1039/C6SC05104A

    30. [30]

      Yan, J.; Su, H.; Yang, H.; Hu, C.; Malola, S.; Lin, S.; Teo, B.; Häkkinen, H.; Zheng, N. J. Am. Chem. Soc. 2016, 138, 12751. doi: 10.1021/jacs.6b08100  doi: 10.1021/jacs.6b08100

    31. [31]

      Biltek, S.; Mandal, S.; Sen, A.; Reber, A.; Pedicini, A.; Khanna, S. J. Am. Chem. Soc. 2013, 135, 26. doi: 10.1021/ja308884s  doi: 10.1021/ja308884s

    32. [32]

      He, J.; Sheng, H.; Schilling, P.; Ma, E. Phys. Rev. Lett. 2001, 86, 2826. doi: 10.1103/PhysRevLett.86.2826  doi: 10.1103/PhysRevLett.86.2826

    33. [33]

      Liu, Y.; Jordan, R.; Qiu, S. Phys. Rev. B 1994, 49, 4478. doi: 10.1103/PhysRevB.49.4478  doi: 10.1103/PhysRevB.49.4478

    34. [34]

      Michalet, X.; Pinaud, F.; Bentolila, L.; Tsay, J.; Doose, S.; Li, J.; Sundaresan, G.; Wu, A.; Gambhir, S.; Weiss, S. Science 2005, 307, 538. doi: 10.1126/science.1104274  doi: 10.1126/science.1104274

    35. [35]

      Rapallo, A.; Rossi, G.; Ferrando, R. J. Chem. Phys.2005, 122, 194308. doi: 10.1063/1.1898223

    36. [36]

      Kumar, A.; Damle, C.; Sastrya, M. Appl. Phys. Lett. 2001, 79, 3314. doi: 10.1063/1.1414298

    37. [37]

      Biltek, S.; Sen, A.; Pedicini, A.; Reber, A.; Khanna, S. J. Phys. Chem. A 2014, 118, 8314. doi: 10.1021/la025586c  doi: 10.1021/la025586c

    38. [38]

      Chowdari, B. V. R.; Mok, K, F.; Xie, J. M.; Gopalakrishnan, R. J. Non-Cryst. Solids 1993, 160, 73. doi: 10.1016/0022-3093(93)90286-7  doi: 10.1016/0022-3093(93)90286-7

    39. [39]

      Khawaja, E.; Salim, M.; Khan, M.; Khattak, G.; Hussain, J. Non-Cryst. Solids 1989, 110, 33. doi: 10.1016/0022-3093(89)90179-8  doi: 10.1016/0022-3093(89)90179-8

    40. [40]

      Marcus, P.; Grimal, J. Corros. Sci. 1992, 33, 805. doi: 10.1016/0010-938X(92)90113-H  doi: 10.1016/0010-938X(92)90113-H

  • 加载中
    1. [1]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    2. [2]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    3. [3]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    4. [4]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    7. [7]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    8. [8]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    9. [9]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    14. [14]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    15. [15]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    16. [16]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    17. [17]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    18. [18]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    19. [19]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    20. [20]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

Metrics
  • PDF Downloads(8)
  • Abstract views(523)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return