Citation: HEIDAR-ZADEH Farnaz, AYERS Paul W.. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinica, ;2018, 34(5): 514-518. doi: 10.3866/PKU.WHXB201710101 shu

Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms

  • Corresponding author: AYERS Paul W., ayers@mcmaster.ca
  • Received Date: 31 August 2017
    Revised Date: 29 September 2017
    Accepted Date: 29 September 2017
    Available Online: 10 May 2017

  • In this study, we show how to generalize Hirshfeld partitioning methods to possibly include non-spherical proatom densities. While this generalization is numerically challenging (requiring global optimization of a large number of parameters), it is conceptually appealing because it allows the proatoms to be pre-polarized, or even promoted, to a state that more closely resembles the atom in a molecule. This method is based on first characterizing the convex set of proatom densities associated with the degenerate ground states of isolated atoms and atomic ions. The preferred orientation of the proatoms' densities are then obtained by minimizing the information–theoretic distance between the promolecular and molecular densities. If contributions from excited states (and not just degenerate ground states) are included in the convex set, this method can describe promoted atoms. While the procedure is intractable in general, if one includes only atomic states that have differing electron-numbers and/or spins, the variational principle becomes a simple convex optimization with a single unique solution.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    2. [2]

      Yang, W.; Cohen, A. J.; Proft, F. D.; Geerlings, P. J. Chem. Phys. 2012, 136(14), 144110. doi: 10.1063/1.3701562  doi: 10.1063/1.3701562

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103(5), 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    4. [4]

      Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
       

    5. [5]

      Liu, S.-B. Acta Phys. -Chim. Sin. 2009, 25(3), 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    6. [6]

      Heidar-Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12(12), 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    7. [7]

      Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039  doi: 10.1016/j.cplett.2016.07.039

    8. [8]

      Geerlings, P.; De Proft, F. Phys. Chem. Chem. Phys. 2008, 10(21), 3028. doi: 10.1039/B717671F  doi: 10.1039/B717671F

    9. [9]

      Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94(8), 5559. doi: 10.1063/1.460491  doi: 10.1063/1.460491

    10. [10]

      Senet, P. J. Chem. Phys. 1996, 105(15), 6471. doi: 10.1063/1.472498  doi: 10.1063/1.472498

    11. [11]

      Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143(24), 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    12. [12]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101(5), 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    13. [13]

      Echegaray, E.; Cardenas, C.; Rabi, S.; Rabi, N.; Lee, S.; Zadeh, F. H.; Toro-Labbe, A.; Anderson, J. S. M.; Ayers, P. W. J. Mol. Model. 2013, 19(7), 2779. doi: 10.1007/s00894-012-1637-3  doi: 10.1007/s00894-012-1637-3

    14. [14]

      Echegaray, E.; Rabi, S.; Cardenas, C.; Zadeh, F. H.; Rabi, N.; Lee, S.; Anderson, J. S. M.; Toro-Labbe, A.; Ayers, P. W. J. Mol. Model. 2014, 20, 2162. doi: 10.1007/s00894-014-2162-3  doi: 10.1007/s00894-014-2162-3

    15. [15]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108(19), 5708. doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    16. [16]

      Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116(20), 8731. doi: 10.1063/1.1467338  doi: 10.1063/1.1467338

    17. [17]

      Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbó-Dorca, R. J. Chem. Phys. 2007, 127(3), 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

    18. [18]

      Echegaray, E.; Toro-Labbe, A.; Dikmenli, K.; Heidar-Zadeh, F.; Rabi, N.; Rabi, S.; Ayers, P. W.; Cardenas, C.; Parr, R. G.; Anderson, J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed.; Springer International Publishing: Cham, Switzerland, 2017; p. 269. doi: 10.1007/978-3-319-53664-4_19  doi: 10.1007/978-3-319-53664-4_19

    19. [19]

      Fuentealba, P.; Pérez, P.; Contreras, R. J. Chem. Phys. 2000, 113(7), 2544. doi: 10.1063/1.1305879  doi: 10.1063/1.1305879

    20. [20]

      Tiznado, W.; Chamorro, E.; Contreras, R.; Fuentealba, P. J. Phys. Chem. A 2005, 109(14), 3220. doi: 10.1021/jp0450787  doi: 10.1021/jp0450787

    21. [21]

      Zadeh, F. H.; Fuentealba, P.; Cardenas, C.; Ayers, P. W. Phys. Chem. Chem. Phys. 2014, 16(13), 6019. doi: 10.1039/c3cp52906a  doi: 10.1039/c3cp52906a

    22. [22]

      Rong, C.; Lu, T.; Liu, S. J. Chem. Phys. 2014, 140(2), 024109. doi: 10.1063/1.4860969  doi: 10.1063/1.4860969

    23. [23]

      Morgenstern, A.; Wilson, T. R.; Eberhart, M. E. J. Phys. Chem. A 2017, 121(22), 4341. doi: 10.1021/acs.jpca.7b00630  doi: 10.1021/acs.jpca.7b00630

    24. [24]

      Sablon, N.; Proft, F. D.; Ayers, P. W.; Geerlings, P. J. Chem. Phys. 2007, 126(22), 224108. doi: 10.1063/1.2736698  doi: 10.1063/1.2736698

    25. [25]

      Olah, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106(15), 3885. doi: 10.1021/jp014039h  doi: 10.1021/jp014039h

    26. [26]

      Liu, S. J. Chem. Phys. 2014, 141(19), 194109. doi: 10.1063/1.4901898  doi: 10.1063/1.4901898

    27. [27]

      Zhou, X.-Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30(11), 2055. doi: 10.3866/PKU.WHXB201409193  doi: 10.3866/PKU.WHXB201409193

    28. [28]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(10), 1833. doi: 10.1063/1.1740588  doi: 10.1063/1.1740588

    29. [29]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(10), 1841. doi: 10.1063/1.1740589  doi: 10.1063/1.1740589

    30. [30]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(12), 2338. doi: 10.1063/1.1741876  doi: 10.1063/1.1741876

    31. [31]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(12), 2343. doi: 10.1063/1.1741877  doi: 10.1063/1.1741877

    32. [32]

      Löwdin, P.-O. Adv. Quantum Chem. 1970, 5, 185. doi: 10.1016/S0065-3276(08)60339-1  doi: 10.1016/S0065-3276(08)60339-1

    33. [33]

      Davidson, E. R. J. Chem. Phys. 1967, 46(9), 3320. doi: 10.1063/1.1841219  doi: 10.1063/1.1841219

    34. [34]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83(2), 735. doi: 10.1063/1.449486  doi: 10.1063/1.449486

    35. [35]

      Lu, W. C.; Wang, C. Z.; Schmidt, M. W.; Bytautas, L.; Ho, K. M.; Ruedenberg, K. J. Chem. Phys. 2004, 120(6), 2629. doi: 10.1063/1.1638731  doi: 10.1063/1.1638731

    36. [36]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon: Oxford, UK, 1990.

    37. [37]

      Heidarzadeh, F.; Shahbazian, S. Int. J. Quantum Chem. 2010, 111(12), 2788. doi: 10.1002/qua.22629  doi: 10.1002/qua.22629

    38. [38]

      Zadeh, F. H.; Shahbazian, S. Theor. Chem. Acc. 2010, 128(2), 175. doi: 10.1007/s00214-010-0811-x  doi: 10.1007/s00214-010-0811-x

    39. [39]

      Morgenstern, A.; Morgenstern, C.; Miorelli, J.; Wilson, T.; Eberhart, M. E. Phys. Chem. Phys. Chem. 2016, 18(7), 5638. doi: 10.1039/c5cp07852k  doi: 10.1039/c5cp07852k

    40. [40]

      Hirshfeld, F. L. Theor. Chim. Act. 1977, 44, 129. doi: 10.1007/BF00549096  doi: 10.1007/BF00549096

    41. [41]

      Guerra, C. F.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25(2), 189. doi: 10.1002/jcc.10351  doi: 10.1002/jcc.10351

    42. [42]

      Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879  doi: 10.1073/pnas.97.16.8879

    43. [43]

      Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105(31), 7391. doi: 10.1021/jp004414q  doi: 10.1021/jp004414q

    44. [44]

      Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109(17), 3957. doi: 10.1021/jp0404596  doi: 10.1021/jp0404596

    45. [45]

      Davidson, E. R.; Chakravorty, S. Theor. Chim. Acta 1992, 83(5–6), 319. doi: 10.1007/bf01113058  doi: 10.1007/bf01113058

    46. [46]

      Heidar-Zadeh, F.; Ayers, P. W.; Verstraelen, T.; Vinogradov, I.; Vohringer-Martinez, E.; Bultinck, P. J. Phys. Chem. A submitted, 2017.
       

    47. [47]

      Heidar-Zadeh, F.; Ayers, P. W.; Bultinck, P. J. Chem. Phys. 2014, 141, 094103. doi: 10.1063/1.4894228  doi: 10.1063/1.4894228

    48. [48]

      Heidar-Zadeh, F.; Ayers, P. W. J. Chem. Phys. 2015, 142(4), 044107. doi: 10.1063/1.4905123  doi: 10.1063/1.4905123

    49. [49]

      Heidar-Zadeh, F.; Vinogradov, I.; Ayers, P. W. Theor. Chem. Acc. 2017, 136(4), 54. doi: 10.1007/s00214-017-2077-z  doi: 10.1007/s00214-017-2077-z

    50. [50]

      Ayers, P. W. J. Chem. Phys. 2000, 113(24), 10886. doi: 10.1063/1.1327268  doi: 10.1063/1.1327268

    51. [51]

      Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5  doi: 10.1007/s00214-006-0121-5

    52. [52]

      Heidar-Zadeh, F.; Ayers, P. W. Theor. Chem. Acc. 2017, 136(8), 92. doi: 10.1007/s00214-017-2114-y  doi: 10.1007/s00214-017-2114-y

    53. [53]

      Verstraelen, T.; Vandenbrande, S.; Heidar-Zadeh, F.; Vanduyfhuys, L.; Van Speybroeck, V.; Waroquier, M.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12(8), 3894. doi: 10.1021/acs.jctc.6b00456  doi: 10.1021/acs.jctc.6b00456

    54. [54]

      Heidar-Zadeh, F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, McMaster University, Canada, and Ghent University, Belgium, 2017.

    55. [55]

      Misquitta, A. J.; Stone, A. J.; Fazeli, F. J. Chem. Theory Comp. 2014, 10(12), 5405. doi: 10.1021/ct5008444  doi: 10.1021/ct5008444

    56. [56]

      Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M. J. Chem. Theory Comp. 2013, 9(5), 2221. doi: 10.1021/ct4000923  doi: 10.1021/ct4000923

    57. [57]

      Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J. Chem. Phys. 2007, 126(14), 144111. doi: 10.1063/1.2715563  doi: 10.1063/1.2715563

    58. [58]

      Bultinck, P.; Ayers, P. W.; Fias, S.; Tiels, K.; Van Alsenoy, C. Chem. Phys. Lett. 2007, 444(1−3), 205. doi: 10.1016/j.cplett.2007.07.014  doi: 10.1016/j.cplett.2007.07.014

    59. [59]

      Ghillemijn, D.; Bultinck, P.; Van Neck, D.; Ayers, P. W. J. Comput. Chem. 2011, 32, 1561. doi: 10.1002/jcc.21734  doi: 10.1002/jcc.21734

    60. [60]

      Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2010, 6(8), 2455. doi: 10.1021/ct100125x  doi: 10.1021/ct100125x

    61. [61]

      Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2012, 8(8), 2844. doi: 10.1021/ct3002199  doi: 10.1021/ct3002199

    62. [62]

      Lee, L. P.; Limas, N. G.; Cole, D. J.; Payne, M. C.; Skylaris, C. K.; Manz, T. A. J. Chem. Theory Comp. 2014, 10(12), 5377. doi: 10.1021/ct500766v  doi: 10.1021/ct500766v

    63. [63]

      Limas, N. G.; Manz, T. A. RSC Adv. 2016, 6(51), 45727. doi: 10.1039/c6ra05507a  doi: 10.1039/c6ra05507a

    64. [64]

      Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6(53), 47771. doi: 10.1039/c6ra04656h  doi: 10.1039/c6ra04656h

    65. [65]

      Lillestolen, T. C.; Wheatley, R. J. Chem. Commun. 2008, 45, 5909. doi: 10.1039/b812691g  doi: 10.1039/b812691g

    66. [66]

      Lillestolen, T. C.; Wheatley, R. J. J. Chem. Phys. 2009, 131, 144101. doi: 10.1063/1.3243863  doi: 10.1063/1.3243863

    67. [67]

      Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M. Chem. Phys. Lett. 2012, 545, 138. doi: 10.1016/j.cplett.2012.07.028  doi: 10.1016/j.cplett.2012.07.028

    68. [68]

      Levy, M. Phys. Rev. A 1982, 26(3), 1200. doi: 10.1103/PhysRevA.26.1200  doi: 10.1103/PhysRevA.26.1200

    69. [69]

      Lieb, E. H. Int. J. Quantum Chem. 1983, 24(3), 243. doi: 10.1002/qua.560240302  doi: 10.1002/qua.560240302

    70. [70]

      Ayers, P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513  doi: 10.1103/PhysRevA.73.012513

    71. [71]

      Cardenas, C.; Ayers, P. W.; Cedillo, A. J. Chem. Phys. 2011, 134, 174103. doi: 10.1063/1.3585610  doi: 10.1063/1.3585610

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    3. [3]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    6. [6]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    7. [7]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    8. [8]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    9. [9]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

Metrics
  • PDF Downloads(15)
  • Abstract views(403)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return