Citation: HEIDAR-ZADEH Farnaz, AYERS Paul W.. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinica, ;2018, 34(5): 514-518. doi: 10.3866/PKU.WHXB201710101 shu

Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms

  • Corresponding author: AYERS Paul W., ayers@mcmaster.ca
  • Received Date: 31 August 2017
    Revised Date: 29 September 2017
    Accepted Date: 29 September 2017
    Available Online: 10 May 2017

  • In this study, we show how to generalize Hirshfeld partitioning methods to possibly include non-spherical proatom densities. While this generalization is numerically challenging (requiring global optimization of a large number of parameters), it is conceptually appealing because it allows the proatoms to be pre-polarized, or even promoted, to a state that more closely resembles the atom in a molecule. This method is based on first characterizing the convex set of proatom densities associated with the degenerate ground states of isolated atoms and atomic ions. The preferred orientation of the proatoms' densities are then obtained by minimizing the information–theoretic distance between the promolecular and molecular densities. If contributions from excited states (and not just degenerate ground states) are included in the convex set, this method can describe promoted atoms. While the procedure is intractable in general, if one includes only atomic states that have differing electron-numbers and/or spins, the variational principle becomes a simple convex optimization with a single unique solution.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    2. [2]

      Yang, W.; Cohen, A. J.; Proft, F. D.; Geerlings, P. J. Chem. Phys. 2012, 136(14), 144110. doi: 10.1063/1.3701562  doi: 10.1063/1.3701562

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103(5), 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    4. [4]

      Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
       

    5. [5]

      Liu, S.-B. Acta Phys. -Chim. Sin. 2009, 25(3), 590. doi: 10.3866/PKU.WHXB20090332  doi: 10.3866/PKU.WHXB20090332

    6. [6]

      Heidar-Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12(12), 5777. doi: 10.1021/acs.jctc.6b00494  doi: 10.1021/acs.jctc.6b00494

    7. [7]

      Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039  doi: 10.1016/j.cplett.2016.07.039

    8. [8]

      Geerlings, P.; De Proft, F. Phys. Chem. Chem. Phys. 2008, 10(21), 3028. doi: 10.1039/B717671F  doi: 10.1039/B717671F

    9. [9]

      Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94(8), 5559. doi: 10.1063/1.460491  doi: 10.1063/1.460491

    10. [10]

      Senet, P. J. Chem. Phys. 1996, 105(15), 6471. doi: 10.1063/1.472498  doi: 10.1063/1.472498

    11. [11]

      Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143(24), 244117. doi: 10.1063/1.4938422  doi: 10.1063/1.4938422

    12. [12]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101(5), 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    13. [13]

      Echegaray, E.; Cardenas, C.; Rabi, S.; Rabi, N.; Lee, S.; Zadeh, F. H.; Toro-Labbe, A.; Anderson, J. S. M.; Ayers, P. W. J. Mol. Model. 2013, 19(7), 2779. doi: 10.1007/s00894-012-1637-3  doi: 10.1007/s00894-012-1637-3

    14. [14]

      Echegaray, E.; Rabi, S.; Cardenas, C.; Zadeh, F. H.; Rabi, N.; Lee, S.; Anderson, J. S. M.; Toro-Labbe, A.; Ayers, P. W. J. Mol. Model. 2014, 20, 2162. doi: 10.1007/s00894-014-2162-3  doi: 10.1007/s00894-014-2162-3

    15. [15]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108(19), 5708. doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    16. [16]

      Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116(20), 8731. doi: 10.1063/1.1467338  doi: 10.1063/1.1467338

    17. [17]

      Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbó-Dorca, R. J. Chem. Phys. 2007, 127(3), 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

    18. [18]

      Echegaray, E.; Toro-Labbe, A.; Dikmenli, K.; Heidar-Zadeh, F.; Rabi, N.; Rabi, S.; Ayers, P. W.; Cardenas, C.; Parr, R. G.; Anderson, J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed.; Springer International Publishing: Cham, Switzerland, 2017; p. 269. doi: 10.1007/978-3-319-53664-4_19  doi: 10.1007/978-3-319-53664-4_19

    19. [19]

      Fuentealba, P.; Pérez, P.; Contreras, R. J. Chem. Phys. 2000, 113(7), 2544. doi: 10.1063/1.1305879  doi: 10.1063/1.1305879

    20. [20]

      Tiznado, W.; Chamorro, E.; Contreras, R.; Fuentealba, P. J. Phys. Chem. A 2005, 109(14), 3220. doi: 10.1021/jp0450787  doi: 10.1021/jp0450787

    21. [21]

      Zadeh, F. H.; Fuentealba, P.; Cardenas, C.; Ayers, P. W. Phys. Chem. Chem. Phys. 2014, 16(13), 6019. doi: 10.1039/c3cp52906a  doi: 10.1039/c3cp52906a

    22. [22]

      Rong, C.; Lu, T.; Liu, S. J. Chem. Phys. 2014, 140(2), 024109. doi: 10.1063/1.4860969  doi: 10.1063/1.4860969

    23. [23]

      Morgenstern, A.; Wilson, T. R.; Eberhart, M. E. J. Phys. Chem. A 2017, 121(22), 4341. doi: 10.1021/acs.jpca.7b00630  doi: 10.1021/acs.jpca.7b00630

    24. [24]

      Sablon, N.; Proft, F. D.; Ayers, P. W.; Geerlings, P. J. Chem. Phys. 2007, 126(22), 224108. doi: 10.1063/1.2736698  doi: 10.1063/1.2736698

    25. [25]

      Olah, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106(15), 3885. doi: 10.1021/jp014039h  doi: 10.1021/jp014039h

    26. [26]

      Liu, S. J. Chem. Phys. 2014, 141(19), 194109. doi: 10.1063/1.4901898  doi: 10.1063/1.4901898

    27. [27]

      Zhou, X.-Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30(11), 2055. doi: 10.3866/PKU.WHXB201409193  doi: 10.3866/PKU.WHXB201409193

    28. [28]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(10), 1833. doi: 10.1063/1.1740588  doi: 10.1063/1.1740588

    29. [29]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(10), 1841. doi: 10.1063/1.1740589  doi: 10.1063/1.1740589

    30. [30]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(12), 2338. doi: 10.1063/1.1741876  doi: 10.1063/1.1741876

    31. [31]

      Mulliken, R. S. J. Chem. Phys. 1955, 23(12), 2343. doi: 10.1063/1.1741877  doi: 10.1063/1.1741877

    32. [32]

      Löwdin, P.-O. Adv. Quantum Chem. 1970, 5, 185. doi: 10.1016/S0065-3276(08)60339-1  doi: 10.1016/S0065-3276(08)60339-1

    33. [33]

      Davidson, E. R. J. Chem. Phys. 1967, 46(9), 3320. doi: 10.1063/1.1841219  doi: 10.1063/1.1841219

    34. [34]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83(2), 735. doi: 10.1063/1.449486  doi: 10.1063/1.449486

    35. [35]

      Lu, W. C.; Wang, C. Z.; Schmidt, M. W.; Bytautas, L.; Ho, K. M.; Ruedenberg, K. J. Chem. Phys. 2004, 120(6), 2629. doi: 10.1063/1.1638731  doi: 10.1063/1.1638731

    36. [36]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon: Oxford, UK, 1990.

    37. [37]

      Heidarzadeh, F.; Shahbazian, S. Int. J. Quantum Chem. 2010, 111(12), 2788. doi: 10.1002/qua.22629  doi: 10.1002/qua.22629

    38. [38]

      Zadeh, F. H.; Shahbazian, S. Theor. Chem. Acc. 2010, 128(2), 175. doi: 10.1007/s00214-010-0811-x  doi: 10.1007/s00214-010-0811-x

    39. [39]

      Morgenstern, A.; Morgenstern, C.; Miorelli, J.; Wilson, T.; Eberhart, M. E. Phys. Chem. Phys. Chem. 2016, 18(7), 5638. doi: 10.1039/c5cp07852k  doi: 10.1039/c5cp07852k

    40. [40]

      Hirshfeld, F. L. Theor. Chim. Act. 1977, 44, 129. doi: 10.1007/BF00549096  doi: 10.1007/BF00549096

    41. [41]

      Guerra, C. F.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25(2), 189. doi: 10.1002/jcc.10351  doi: 10.1002/jcc.10351

    42. [42]

      Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879  doi: 10.1073/pnas.97.16.8879

    43. [43]

      Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105(31), 7391. doi: 10.1021/jp004414q  doi: 10.1021/jp004414q

    44. [44]

      Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109(17), 3957. doi: 10.1021/jp0404596  doi: 10.1021/jp0404596

    45. [45]

      Davidson, E. R.; Chakravorty, S. Theor. Chim. Acta 1992, 83(5–6), 319. doi: 10.1007/bf01113058  doi: 10.1007/bf01113058

    46. [46]

      Heidar-Zadeh, F.; Ayers, P. W.; Verstraelen, T.; Vinogradov, I.; Vohringer-Martinez, E.; Bultinck, P. J. Phys. Chem. A submitted, 2017.
       

    47. [47]

      Heidar-Zadeh, F.; Ayers, P. W.; Bultinck, P. J. Chem. Phys. 2014, 141, 094103. doi: 10.1063/1.4894228  doi: 10.1063/1.4894228

    48. [48]

      Heidar-Zadeh, F.; Ayers, P. W. J. Chem. Phys. 2015, 142(4), 044107. doi: 10.1063/1.4905123  doi: 10.1063/1.4905123

    49. [49]

      Heidar-Zadeh, F.; Vinogradov, I.; Ayers, P. W. Theor. Chem. Acc. 2017, 136(4), 54. doi: 10.1007/s00214-017-2077-z  doi: 10.1007/s00214-017-2077-z

    50. [50]

      Ayers, P. W. J. Chem. Phys. 2000, 113(24), 10886. doi: 10.1063/1.1327268  doi: 10.1063/1.1327268

    51. [51]

      Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5  doi: 10.1007/s00214-006-0121-5

    52. [52]

      Heidar-Zadeh, F.; Ayers, P. W. Theor. Chem. Acc. 2017, 136(8), 92. doi: 10.1007/s00214-017-2114-y  doi: 10.1007/s00214-017-2114-y

    53. [53]

      Verstraelen, T.; Vandenbrande, S.; Heidar-Zadeh, F.; Vanduyfhuys, L.; Van Speybroeck, V.; Waroquier, M.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12(8), 3894. doi: 10.1021/acs.jctc.6b00456  doi: 10.1021/acs.jctc.6b00456

    54. [54]

      Heidar-Zadeh, F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, McMaster University, Canada, and Ghent University, Belgium, 2017.

    55. [55]

      Misquitta, A. J.; Stone, A. J.; Fazeli, F. J. Chem. Theory Comp. 2014, 10(12), 5405. doi: 10.1021/ct5008444  doi: 10.1021/ct5008444

    56. [56]

      Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M. J. Chem. Theory Comp. 2013, 9(5), 2221. doi: 10.1021/ct4000923  doi: 10.1021/ct4000923

    57. [57]

      Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J. Chem. Phys. 2007, 126(14), 144111. doi: 10.1063/1.2715563  doi: 10.1063/1.2715563

    58. [58]

      Bultinck, P.; Ayers, P. W.; Fias, S.; Tiels, K.; Van Alsenoy, C. Chem. Phys. Lett. 2007, 444(1−3), 205. doi: 10.1016/j.cplett.2007.07.014  doi: 10.1016/j.cplett.2007.07.014

    59. [59]

      Ghillemijn, D.; Bultinck, P.; Van Neck, D.; Ayers, P. W. J. Comput. Chem. 2011, 32, 1561. doi: 10.1002/jcc.21734  doi: 10.1002/jcc.21734

    60. [60]

      Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2010, 6(8), 2455. doi: 10.1021/ct100125x  doi: 10.1021/ct100125x

    61. [61]

      Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2012, 8(8), 2844. doi: 10.1021/ct3002199  doi: 10.1021/ct3002199

    62. [62]

      Lee, L. P.; Limas, N. G.; Cole, D. J.; Payne, M. C.; Skylaris, C. K.; Manz, T. A. J. Chem. Theory Comp. 2014, 10(12), 5377. doi: 10.1021/ct500766v  doi: 10.1021/ct500766v

    63. [63]

      Limas, N. G.; Manz, T. A. RSC Adv. 2016, 6(51), 45727. doi: 10.1039/c6ra05507a  doi: 10.1039/c6ra05507a

    64. [64]

      Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6(53), 47771. doi: 10.1039/c6ra04656h  doi: 10.1039/c6ra04656h

    65. [65]

      Lillestolen, T. C.; Wheatley, R. J. Chem. Commun. 2008, 45, 5909. doi: 10.1039/b812691g  doi: 10.1039/b812691g

    66. [66]

      Lillestolen, T. C.; Wheatley, R. J. J. Chem. Phys. 2009, 131, 144101. doi: 10.1063/1.3243863  doi: 10.1063/1.3243863

    67. [67]

      Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M. Chem. Phys. Lett. 2012, 545, 138. doi: 10.1016/j.cplett.2012.07.028  doi: 10.1016/j.cplett.2012.07.028

    68. [68]

      Levy, M. Phys. Rev. A 1982, 26(3), 1200. doi: 10.1103/PhysRevA.26.1200  doi: 10.1103/PhysRevA.26.1200

    69. [69]

      Lieb, E. H. Int. J. Quantum Chem. 1983, 24(3), 243. doi: 10.1002/qua.560240302  doi: 10.1002/qua.560240302

    70. [70]

      Ayers, P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513  doi: 10.1103/PhysRevA.73.012513

    71. [71]

      Cardenas, C.; Ayers, P. W.; Cedillo, A. J. Chem. Phys. 2011, 134, 174103. doi: 10.1063/1.3585610  doi: 10.1063/1.3585610

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    3. [3]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    4. [4]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    5. [5]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    6. [6]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    7. [7]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    8. [8]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    11. [11]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    14. [14]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    19. [19]

      Haijiao LiuQiao FengYu HuangFeng WuYali LiuMinxia ShenXiao GuoWenting DaiWeining QiYifan ZhangLu LiQiyuan WangBianhong ZhouJianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636

    20. [20]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

Metrics
  • PDF Downloads(15)
  • Abstract views(442)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return