Citation: ZHU Min, LI Manbo, YAO Chuanhao, XIA Nan, ZHAO Yan, YAN Nan, LIAO Lingwen, WU Zhikun. PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 792-798. doi: 10.3866/PKU.WHXB201710091 shu

PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+

  • Corresponding author: WU Zhikun, zkwu@issp.ac.cn
  • These authors contributed equally to this work
  • Received Date: 12 September 2017
    Revised Date: 28 September 2017
    Accepted Date: 28 September 2017
    Available Online: 9 July 2017

    Fund Project: the National Natural Science Foundation of China 21222301the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology 2014FXCX002the National Natural Science Foundation of China 21528303the National Natural Science Foundation of China 21771186The project was supported by the National Natural Science Foundation of China (21222301, 21528303, 21603234, 21771186, 21171170, and 21601193), the National Basic Research Program of China (2013CB934302), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2014FXCX002), and the CAS/SAFEA International Partnership Program for Creative Research Teamsthe National Natural Science Foundation of China 21171170the National Basic Research Program of China 2013CB934302the National Natural Science Foundation of China 21601193the National Natural Science Foundation of China 21603234

  • Research on gold nanoclusters is at the frontier of nanoscience and nanotechnology. The introduction of the first phosphine-protected gold nanocluster, Au11(PPh3)7(SCN)3 (where PPh3 stands for triphenylphosphine and Ph stands for benzene), can be dated back to 1969. As research in the field progressed, many structures of phosphine-protected nanoclusters such as Au5, Au8, Au13, and Au39 were reported. However, the stability of these phosphine-protected nanoclusters was not satisfactory, which handicapped their research and application. In an attempt to find alternatives for phosphine-protected nanoclusters, thiolated gold nanoclusters have attracted extensive attention in recent years. So far, there has been great progress primarily owing to the development of wet-chemical synthesis techniques, among which the utilization of ligand-exchange has been proved to be very effective to synthesize thiolated gold nanoclusters. It can be easily understood that phosphine in gold nanoclusters can be exchanged with thiolate because the latter has stronger affinity for gold. However, we recently found that the reverse ligand-exchange, i.e., the exchange of thiolate with phosphine, can also take place. Some questions have naturally arisen: Is the reverse ligand-exchange only applicable to superatomic [Au25(SR)18] (SR: thiolate) nanoclusters? Can it occur in other thiolated gold nanoclusters? If so, is this reverse ligand-exchange also dependent on the starting nanoclusters? These intriguing issues have inspired us to conduct this work. We investigated the reactions of PPh3 with some thiolated gold nanoparticles, including [Au23(SC6H11)16], Au24(SC2H4Ph)20, Au36(TBBT)28 (where TBBT stands for 4-(tert-butyl) benzene-1-thiolate), Au38(SC2H4Ph)20, mixed nanoclusters, and 3 nm Au nanoparticles. Surprisingly, the experimental results showed that under the action of PPh3, thiolated gold nanoclusters (or nanoparticles) with different compositions, structures, sizes, and protecting thiolates can be uniformly transformed to [Au11(PPh3)8Cl2]+ and then [Au25(PPh3)10(SR)5Cl2]2+. In other words, PPh3 is a universal converter for these thiolated gold nanoparticles. However, gold nanoparticles that are protected by polyvinylpyrrolidone (PVP) or citrate and [Ag25(SPhMe2)18] particles cannot be transformed to [Au25(PPh3)10(SR)5Cl2]2+ and [Ag25(PPh3)10(SR)5Cl2]2+, respectively, under the same conditions, which indicated that the special reactivity with PPh3 is unique to thiolated gold nanoparticles. Our preliminary investigation on a possible reaction path between thiolated gold nanoparticles and PPh3 also revealed that the peeling process found in Au25 nanoclusters may be applicable to the conversion of [Au23(SC6H11)16], but not other nanoclusters like Au24(SC2H4Ph)20 and Au36(TBBT)28. Employing this special chemistry, we synthesized seven [Au25(PPh3)10(SR)5Cl2]2+ species with various ligands and investigated the effect of the ligand on the luminescence properties of [Au25(PPh3)10(SR)5Cl2]2+. We found that the luminescence quantum yields decreased in the following order: [Au25(PPh3)10(SCH2Ph-t-Bu)5Cl2]2+ (1.32 × 10−4) > [Au25(PPh3)10(SCH2Ph)5Cl2]2+ (8.23 × 10−5) > [Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (5.35 × 10−6) > [Au25(PPh3)10(SC12H25)5Cl2]2+ (5.02 × 10−6) > [Au25(PPh3)10(SPh-t-Bu)5Cl2]2+ (3.97 × 10−6) > [Au25(PPh3)10(SC6H13)5Cl2]2+ (3.73 × 10−6) > [Au25(PPh3)10(S-c-C6H11)5Cl2]2+ (1.53 × 10−6). Therefore, it can be concluded that SCH2Ph-t-Bu is the best ligand, while S-c-C6H11 is the worse one for triggering luminescence from gold nanoparticles in the investigated thiolates. Since such diversity in surface ligands is not found in other nanoclusters (e.g., [Au25(SR)18]), the special chemistry between thiolated gold nanoparticles and PPh3 provides excellent opportunities to investigate the effect of ligands on the properties of gold nanoparticles and to screen ligands for special applications. In summary, in this work we reveal the unique chemistry of thiolated gold nanoparticles with PPh3 and provide excellent opportunities for investigating ligand effects of gold nanoparticles and screening ligands for special applications.
  • 加载中
    1. [1]

      McPartlin, M.; Mason, R.; Malatesta, L. J. Chem. Soc. D 1969, 7, 334. doi: 10.1039/C29690000334  doi: 10.1039/C29690000334

    2. [2]

      Bennett, M. A.; Welling, L. L.; Willis, A. C. Inorg. Chem. 1997, 36, 5670. doi: 10.1021/ic9703686  doi: 10.1021/ic9703686

    3. [3]

      van der Velden, J. W. A.; Beurskens, P. T.; Bour, J. J.; Bosman, W. P.; Noordik, J. H.; Kolenbrander, M.; Buskes, J. A. K. M. Inorg. Chem. 1984, 23, 146. doi: 10.1021/ic00170a007  doi: 10.1021/ic00170a007

    4. [4]

      van der Velden, J. W. A.; Bour, J. J.; Bosman, W. P.; Noordik, J. H. Inorg. Chem. 1983, 22, 1913. doi: 10.1021/ic00155a018  doi: 10.1021/ic00155a018

    5. [5]

      Yanagimoto, Y.; Negishi, Y.; Fujihara, H.; Tsukuda, T. J. Phys. Chem. B 2006, 110, 11611. doi: 10.1021/jp061670f  doi: 10.1021/jp061670f

    6. [6]

      Gutrath, B. S.; Englert, U.; Wang, Y.; Simon, U. Eur. J. Inorg. Chem. 2013, 2013, 2002. doi: 10.1002/ejic.201300148  doi: 10.1002/ejic.201300148

    7. [7]

      Shichibu, Y.; Konishi, K. Small2010, 6, 1216. doi: 10.1002/smll.200902398  doi: 10.1002/smll.200902398

    8. [8]

      Menard, L. D.; Gao, S.; Xu, H.; Twesten, R. D.; Harper, A. S.; Song, Y.; Wang, G.; Douglas, A. D.; Yang, J. C.; Frenkel, A. I.; et al. J. Phys. Chem. B 2006, 110, 12874. doi: 10.1021/jp060739g  doi: 10.1021/jp060739g

    9. [9]

      Teo, B. K.; Shi, X.; Zhang, H. J. Am. Chem. Soc. 1992, 114, 2743. doi: 10.1021/ja00033a073  doi: 10.1021/ja00033a073

    10. [10]

      Wan, X.; Yuan, S.; Lin, Z.; Wang, Q. Angew. Chem. Int. Ed. 2014, 53, 2967. doi: 10.1002/ange.201308599  doi: 10.1002/ange.201308599

    11. [11]

      Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 3, 801. doi: 10.1039/C39940000801  doi: 10.1039/C39940000801

    12. [12]

      Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428. doi: 10.1002/adma.19960080513  doi: 10.1002/adma.19960080513

    13. [13]

      Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098. doi: 10.1126/science.280.5372.2098  doi: 10.1126/science.280.5372.2098

    14. [14]

      Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261. doi: 10.1021/ja042218h  doi: 10.1021/ja042218h

    15. [15]

      Pei, Y.; Gao, Y.; Zeng, X. J. Am. Chem. Soc. 2008, 130, 7830. doi: 10.1021/ja802975b  doi: 10.1021/ja802975b

    16. [16]

      Wu, Z.; Suhan, J.; Jin, R. J. Mater. Chem. 2009, 19, 622.doi: 10.1039/B815983A  doi: 10.1039/B815983A

    17. [17]

      Zhu, Y.; Qian, H.; Drake, B. A.; Jin, R. Angew. Chem. Int. Ed. 2010, 122, 1317. doi: 10.1002/ange.200906249  doi: 10.1002/ange.200906249

    18. [18]

      Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568. doi: 10.1021/nl101225f  doi: 10.1021/nl101225f

    19. [19]

      Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. Accounts Chem. Res. 2010, 43, 1289. doi: 10.1021/ar100048c  doi: 10.1021/ar100048c

    20. [20]

      Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T. J. Am. Chem. Soc. 2009, 132, 16. doi: 10.1021/ja907984r  doi: 10.1021/ja907984r

    21. [21]

      Song, Y.; Wang, S.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H.; Zhu, M. J. Am. Chem. Soc. 2014, 136, 2963. doi: 10.1021/ja4131142  doi: 10.1021/ja4131142

    22. [22]

      Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R. Small2012, 8, 2028. doi: 10.1002/smll.201102590  doi: 10.1002/smll.201102590

    23. [23]

      Dolamic, I.; Knoppe, S.; Dass, A.; Bürgi, T. Nat. Commun. 2012, 3, 798. doi: 10.1038/ncomms1802  doi: 10.1038/ncomms1802

    24. [24]

      Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594.doi: 10.1039/C2CS15325D  doi: 10.1039/C2CS15325D

    25. [25]

      Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011. doi: 10.1021/ja404058q  doi: 10.1021/ja404058q

    26. [26]

      Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascón, J. A.; Maran, F. J. Am. Chem. Soc. 2013, 135, 15585. doi: 10.1021/ja407887d  doi: 10.1021/ja407887d

    27. [27]

      Liao, L.; Zhuang, S.; Wang, P.; Xu, Y.; Yan, N.; Dong, H.; Wang, C.; Zhao, Y.; Xia, N.; Li, J.; et al. Angew. Chem. Int. Ed. 2017, 56, 12644.doi: 10.1002/anie.201707582  doi: 10.1002/anie.201707582

    28. [28]

      Zhang, X.; Luo, Z.; Chen, J.; Shen, X.; Song, S.; Sun, Y.; Fan, S.; Fan, F.; Leong, D. T.; Xie, J. Adv. Mater. 2014, 26, 4565. doi: 10.1002/adma.201400866  doi: 10.1002/adma.201400866

    29. [29]

      Luo, Z.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D.; Xie, J. J. Am. Chem. Soc. 2014, 136, 10577. doi: 10.1021/ja505429f  doi: 10.1021/ja505429f

    30. [30]

      Yamazoe, S.; Koyasu, K.; Tsukuda, T. Accounts Chem. Res. 2014, 47, 816. doi: 10.1021/ar400209a  doi: 10.1021/ar400209a

    31. [31]

      Yu, Y.; Yao, Q.; Cheng, K.; Yuan, X.; Luo, Z.; Xie, J. Part. Part. Syst. Character. 2014, 31, 652. doi: 10.1002/ppsc.201300344  doi: 10.1002/ppsc.201300344

    32. [32]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    33. [33]

      Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769  doi: 10.1021/acs.chemrev.6b00769

    34. [34]

      Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430. doi: 10.1126/science.1148624  doi: 10.1126/science.1148624

    35. [35]

      Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754. doi: 10.1021/ja800561b  doi: 10.1021/ja800561b

    36. [36]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    37. [37]

      Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. USA 2008, 105, 9157. doi: 10.1073/pnas.0801001105  doi: 10.1073/pnas.0801001105

    38. [38]

      Wu, Z. Angew. Chem. Int. Ed. 2012, 51, 2934. doi: 10.1002/anie.201107822  doi: 10.1002/anie.201107822

    39. [39]

      Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; et al. Nature 2013, 501, 399. doi: 10.1038/nature12523  doi: 10.1038/nature12523

    40. [40]

      Tian, S.; Li, Y.; Li, M.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667. doi: 10.1038/ncomms9667  doi: 10.1038/ncomms9667

    41. [41]

      Yang, H.; Wang, Y.; Chen, X.; Zhao, X.; Gu, L.; Huang, H.; Yan, J.; Xu, C.; Li, G.; Wu, J.; et al. Nat. Commun. 2016, 7, 12809. doi: 10.1038/ncomms12809  doi: 10.1038/ncomms12809

    42. [42]

      Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K. J.; Jin, R. Science 2016, 354, 1580. doi: 10.1126/science.aak9750  doi: 10.1126/science.aak9750

    43. [43]

      Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. Nat. Commun.2017, 8, 14739.doi: 10.1038/ncomms14739  doi: 10.1038/ncomms14739

    44. [44]

      Chen, T.; Yang, S.; Chai, J.; Song, Y.; Fan, J.; Rao, B.; Sheng, H.; Yu, H.; Zhu, M. Sci. Adv. 2017, 3, e1700956. doi: 10.1126/sciadv.1700956  doi: 10.1126/sciadv.1700956

    45. [45]

      Wu, Z. Acta Phys. -Chim. Sin. 2017, 33, 1930. doi: 10.3866/PKU.WHXB201706026  doi: 10.3866/PKU.WHXB201706026

    46. [46]

      Xia, N.; Wu, Z. J. Mater. Chem. C 2016, 4, 4125. doi: 10.1039/C6TC00744A  doi: 10.1039/C6TC00744A

    47. [47]

      Han, S.; Zhang, Z.; Li, S.; Qi, L.; Xu, G. Sci. China Chem. 2016, 59, 794. doi: 10.1007/s11426-016-0043-3  doi: 10.1007/s11426-016-0043-3

    48. [48]

      Schmid, G.; Klein, N.; Korste, L.; Kreibig, U.; Schonauer, D. Polyhedron 1988, 7, 605. doi: 10.1016/S0277-5387(00)80366-6  doi: 10.1016/S0277-5387(00)80366-6

    49. [49]

      Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1997, 119, 12384. doi: 10.1021/ja972900u  doi: 10.1021/ja972900u

    50. [50]

      Woehrle, G. H.; Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 2005, 127, 2172. doi: 10.1021/ja0457718  doi: 10.1021/ja0457718

    51. [51]

      Balasubramanian, R.; Guo, R.; Mills, A. J.; Murray, R. W. J. Am. Chem. Soc. 2005, 127, 8126. doi: 10.1021/ja050793v  doi: 10.1021/ja050793v

    52. [52]

      Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. J. Am. Chem. Soc. 2005, 127, 13464. doi: 10.1021/ja053915s  doi: 10.1021/ja053915s

    53. [53]

      Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. J. Phys. Chem. C 2007, 111, 7845. doi: 10.1021/jp073101t  doi: 10.1021/jp073101t

    54. [54]

      Caragheorgheopol, A.; Chechik, V. Phys. Chem. Chem. Phys. 2008, 10, 5029. doi: 10.1039/B805551C  doi: 10.1039/B805551C

    55. [55]

      Knoppe, S.; Dharmaratne, A. C.; Schreiner, E.; Dass, A.; Bürgi, T. J. Am. Chem. Soc. 2010, 132, 16783. doi: 10.1021/ja104641x  doi: 10.1021/ja104641x

    56. [56]

      Knoppe, S.; Azoulay, R.; Dass, A.; Bürgi, T. J. Am. Chem. Soc. 2012, 134, 20302. doi: 10.1021/ja310330m  doi: 10.1021/ja310330m

    57. [57]

      Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51, 13114. doi: 10.1002/ange.201207098  doi: 10.1002/ange.201207098

    58. [58]

      Li, M.; Tian, S.; Wu, Z.; Jin, R. Chem. Mater. 2016, 28, 1022. doi: 10.1021/acs.chemmater.5b04907  doi: 10.1021/acs.chemmater.5b04907

    59. [59]

      Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567. doi: 10.1002/cjoc.201600526  doi: 10.1002/cjoc.201600526

    60. [60]

      Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; et al. Angew. Chem. Int. Ed. 2016, 55, 11567. doi: 10.1002/anie.201606661  doi: 10.1002/anie.201606661

    61. [61]

      Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. J. Am. Chem. Soc. 2015, 137, 11578. doi: 10.1021/jacs.5b07088  doi: 10.1021/jacs.5b07088

    62. [62]

      Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 18264. doi: 10.1021/ja409177s  doi: 10.1021/ja409177s

    63. [63]

      Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. J. Am. Chem. Soc. 2007, 129, 13939. doi: 10.1021/ja074447k  doi: 10.1021/ja074447k

    64. [64]

      Zhu, H.; Wang, Y.; Chen, C.; Ma, M.; Zeng, J.; Li, S.; Xia, Y.; Gao, M. ACS Nano 2017. doi: 10.1021/acsnano.7b03369  doi: 10.1021/acsnano.7b03369

    65. [65]

      Qian, H.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. Inorg. Chem. 2011, 50, 10735. doi: 10.1021/ic2012292  doi: 10.1021/ic2012292

    66. [66]

      Li, M.; Tian, S.; Wu, Z. Nanoscale 2014, 6, 5714. doi: 10.1039/c4nr00658e  doi: 10.1039/c4nr00658e

    67. [67]

      Yao, C.; Chen, J.; Li, M.; Liu, L.; Yang, J.; Wu, Z. Nano Lett. 2015, 15, 1281. doi: 10.1021/nl504477t  doi: 10.1021/nl504477t

    68. [68]

      Liu, X.; Yuan, J.; Yao, C.; Chen, J.; Li, L.; Bao, X.; Yang, J.; Wu, Z. J. Phys. Chem. C 2017, 121, 13848. doi: 10.1021/acs.jpcc.7b01730  doi: 10.1021/acs.jpcc.7b01730

    69. [69]

      Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. ACS Nano 2016, 10, 7998. doi: 10.1021/acsnano.6b03964  doi: 10.1021/acsnano.6b03964

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    3. [3]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    4. [4]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    5. [5]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    6. [6]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    9. [9]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    10. [10]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    11. [11]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    12. [12]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    13. [13]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    14. [14]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    15. [15]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    18. [18]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    19. [19]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    20. [20]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

Metrics
  • PDF Downloads(18)
  • Abstract views(962)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return