PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+
- Corresponding author: WU Zhikun, zkwu@issp.ac.cn † These authors contributed equally to this work
Citation: ZHU Min, LI Manbo, YAO Chuanhao, XIA Nan, ZHAO Yan, YAN Nan, LIAO Lingwen, WU Zhikun. PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 792-798. doi: 10.3866/PKU.WHXB201710091
McPartlin, M.; Mason, R.; Malatesta, L. J. Chem. Soc. D 1969, 7, 334. doi: 10.1039/C29690000334
doi: 10.1039/C29690000334
Bennett, M. A.; Welling, L. L.; Willis, A. C. Inorg. Chem. 1997, 36, 5670. doi: 10.1021/ic9703686
doi: 10.1021/ic9703686
van der Velden, J. W. A.; Beurskens, P. T.; Bour, J. J.; Bosman, W. P.; Noordik, J. H.; Kolenbrander, M.; Buskes, J. A. K. M. Inorg. Chem. 1984, 23, 146. doi: 10.1021/ic00170a007
doi: 10.1021/ic00170a007
van der Velden, J. W. A.; Bour, J. J.; Bosman, W. P.; Noordik, J. H. Inorg. Chem. 1983, 22, 1913. doi: 10.1021/ic00155a018
doi: 10.1021/ic00155a018
Yanagimoto, Y.; Negishi, Y.; Fujihara, H.; Tsukuda, T. J. Phys. Chem. B 2006, 110, 11611. doi: 10.1021/jp061670f
doi: 10.1021/jp061670f
Gutrath, B. S.; Englert, U.; Wang, Y.; Simon, U. Eur. J. Inorg. Chem. 2013, 2013, 2002. doi: 10.1002/ejic.201300148
doi: 10.1002/ejic.201300148
Shichibu, Y.; Konishi, K. Small2010, 6, 1216. doi: 10.1002/smll.200902398
doi: 10.1002/smll.200902398
Menard, L. D.; Gao, S.; Xu, H.; Twesten, R. D.; Harper, A. S.; Song, Y.; Wang, G.; Douglas, A. D.; Yang, J. C.; Frenkel, A. I.; et al. J. Phys. Chem. B 2006, 110, 12874. doi: 10.1021/jp060739g
doi: 10.1021/jp060739g
Teo, B. K.; Shi, X.; Zhang, H. J. Am. Chem. Soc. 1992, 114, 2743. doi: 10.1021/ja00033a073
doi: 10.1021/ja00033a073
Wan, X.; Yuan, S.; Lin, Z.; Wang, Q. Angew. Chem. Int. Ed. 2014, 53, 2967. doi: 10.1002/ange.201308599
doi: 10.1002/ange.201308599
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 3, 801. doi: 10.1039/C39940000801
doi: 10.1039/C39940000801
Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428. doi: 10.1002/adma.19960080513
doi: 10.1002/adma.19960080513
Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098. doi: 10.1126/science.280.5372.2098
doi: 10.1126/science.280.5372.2098
Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261. doi: 10.1021/ja042218h
doi: 10.1021/ja042218h
Pei, Y.; Gao, Y.; Zeng, X. J. Am. Chem. Soc. 2008, 130, 7830. doi: 10.1021/ja802975b
doi: 10.1021/ja802975b
Wu, Z.; Suhan, J.; Jin, R. J. Mater. Chem. 2009, 19, 622.doi: 10.1039/B815983A
doi: 10.1039/B815983A
Zhu, Y.; Qian, H.; Drake, B. A.; Jin, R. Angew. Chem. Int. Ed. 2010, 122, 1317. doi: 10.1002/ange.200906249
doi: 10.1002/ange.200906249
Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568. doi: 10.1021/nl101225f
doi: 10.1021/nl101225f
Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. Accounts Chem. Res. 2010, 43, 1289. doi: 10.1021/ar100048c
doi: 10.1021/ar100048c
Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T. J. Am. Chem. Soc. 2009, 132, 16. doi: 10.1021/ja907984r
doi: 10.1021/ja907984r
Song, Y.; Wang, S.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H.; Zhu, M. J. Am. Chem. Soc. 2014, 136, 2963. doi: 10.1021/ja4131142
doi: 10.1021/ja4131142
Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R. Small2012, 8, 2028. doi: 10.1002/smll.201102590
doi: 10.1002/smll.201102590
Dolamic, I.; Knoppe, S.; Dass, A.; Bürgi, T. Nat. Commun. 2012, 3, 798. doi: 10.1038/ncomms1802
doi: 10.1038/ncomms1802
Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594.doi: 10.1039/C2CS15325D
doi: 10.1039/C2CS15325D
Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011. doi: 10.1021/ja404058q
doi: 10.1021/ja404058q
Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascón, J. A.; Maran, F. J. Am. Chem. Soc. 2013, 135, 15585. doi: 10.1021/ja407887d
doi: 10.1021/ja407887d
Liao, L.; Zhuang, S.; Wang, P.; Xu, Y.; Yan, N.; Dong, H.; Wang, C.; Zhao, Y.; Xia, N.; Li, J.; et al. Angew. Chem. Int. Ed. 2017, 56, 12644.doi: 10.1002/anie.201707582
doi: 10.1002/anie.201707582
Zhang, X.; Luo, Z.; Chen, J.; Shen, X.; Song, S.; Sun, Y.; Fan, S.; Fan, F.; Leong, D. T.; Xie, J. Adv. Mater. 2014, 26, 4565. doi: 10.1002/adma.201400866
doi: 10.1002/adma.201400866
Luo, Z.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D.; Xie, J. J. Am. Chem. Soc. 2014, 136, 10577. doi: 10.1021/ja505429f
doi: 10.1021/ja505429f
Yamazoe, S.; Koyasu, K.; Tsukuda, T. Accounts Chem. Res. 2014, 47, 816. doi: 10.1021/ar400209a
doi: 10.1021/ar400209a
Yu, Y.; Yao, Q.; Cheng, K.; Yuan, X.; Luo, Z.; Xie, J. Part. Part. Syst. Character. 2014, 31, 652. doi: 10.1002/ppsc.201300344
doi: 10.1002/ppsc.201300344
Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703
doi: 10.1021/acs.chemrev.5b00703
Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769
doi: 10.1021/acs.chemrev.6b00769
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430. doi: 10.1126/science.1148624
doi: 10.1126/science.1148624
Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754. doi: 10.1021/ja800561b
doi: 10.1021/ja800561b
Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r
doi: 10.1021/ja801173r
Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. USA 2008, 105, 9157. doi: 10.1073/pnas.0801001105
doi: 10.1073/pnas.0801001105
Wu, Z. Angew. Chem. Int. Ed. 2012, 51, 2934. doi: 10.1002/anie.201107822
doi: 10.1002/anie.201107822
Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; et al. Nature 2013, 501, 399. doi: 10.1038/nature12523
doi: 10.1038/nature12523
Tian, S.; Li, Y.; Li, M.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667. doi: 10.1038/ncomms9667
doi: 10.1038/ncomms9667
Yang, H.; Wang, Y.; Chen, X.; Zhao, X.; Gu, L.; Huang, H.; Yan, J.; Xu, C.; Li, G.; Wu, J.; et al. Nat. Commun. 2016, 7, 12809. doi: 10.1038/ncomms12809
doi: 10.1038/ncomms12809
Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K. J.; Jin, R. Science 2016, 354, 1580. doi: 10.1126/science.aak9750
doi: 10.1126/science.aak9750
Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. Nat. Commun.2017, 8, 14739.doi: 10.1038/ncomms14739
doi: 10.1038/ncomms14739
Chen, T.; Yang, S.; Chai, J.; Song, Y.; Fan, J.; Rao, B.; Sheng, H.; Yu, H.; Zhu, M. Sci. Adv. 2017, 3, e1700956. doi: 10.1126/sciadv.1700956
doi: 10.1126/sciadv.1700956
Wu, Z. Acta Phys. -Chim. Sin. 2017, 33, 1930. doi: 10.3866/PKU.WHXB201706026
doi: 10.3866/PKU.WHXB201706026
Xia, N.; Wu, Z. J. Mater. Chem. C 2016, 4, 4125. doi: 10.1039/C6TC00744A
doi: 10.1039/C6TC00744A
Han, S.; Zhang, Z.; Li, S.; Qi, L.; Xu, G. Sci. China Chem. 2016, 59, 794. doi: 10.1007/s11426-016-0043-3
doi: 10.1007/s11426-016-0043-3
Schmid, G.; Klein, N.; Korste, L.; Kreibig, U.; Schonauer, D. Polyhedron 1988, 7, 605. doi: 10.1016/S0277-5387(00)80366-6
doi: 10.1016/S0277-5387(00)80366-6
Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1997, 119, 12384. doi: 10.1021/ja972900u
doi: 10.1021/ja972900u
Woehrle, G. H.; Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 2005, 127, 2172. doi: 10.1021/ja0457718
doi: 10.1021/ja0457718
Balasubramanian, R.; Guo, R.; Mills, A. J.; Murray, R. W. J. Am. Chem. Soc. 2005, 127, 8126. doi: 10.1021/ja050793v
doi: 10.1021/ja050793v
Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. J. Am. Chem. Soc. 2005, 127, 13464. doi: 10.1021/ja053915s
doi: 10.1021/ja053915s
Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. J. Phys. Chem. C 2007, 111, 7845. doi: 10.1021/jp073101t
doi: 10.1021/jp073101t
Caragheorgheopol, A.; Chechik, V. Phys. Chem. Chem. Phys. 2008, 10, 5029. doi: 10.1039/B805551C
doi: 10.1039/B805551C
Knoppe, S.; Dharmaratne, A. C.; Schreiner, E.; Dass, A.; Bürgi, T. J. Am. Chem. Soc. 2010, 132, 16783. doi: 10.1021/ja104641x
doi: 10.1021/ja104641x
Knoppe, S.; Azoulay, R.; Dass, A.; Bürgi, T. J. Am. Chem. Soc. 2012, 134, 20302. doi: 10.1021/ja310330m
doi: 10.1021/ja310330m
Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51, 13114. doi: 10.1002/ange.201207098
doi: 10.1002/ange.201207098
Li, M.; Tian, S.; Wu, Z.; Jin, R. Chem. Mater. 2016, 28, 1022. doi: 10.1021/acs.chemmater.5b04907
doi: 10.1021/acs.chemmater.5b04907
Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567. doi: 10.1002/cjoc.201600526
doi: 10.1002/cjoc.201600526
Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; et al. Angew. Chem. Int. Ed. 2016, 55, 11567. doi: 10.1002/anie.201606661
doi: 10.1002/anie.201606661
Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. J. Am. Chem. Soc. 2015, 137, 11578. doi: 10.1021/jacs.5b07088
doi: 10.1021/jacs.5b07088
Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 18264. doi: 10.1021/ja409177s
doi: 10.1021/ja409177s
Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. J. Am. Chem. Soc. 2007, 129, 13939. doi: 10.1021/ja074447k
doi: 10.1021/ja074447k
Zhu, H.; Wang, Y.; Chen, C.; Ma, M.; Zeng, J.; Li, S.; Xia, Y.; Gao, M. ACS Nano 2017. doi: 10.1021/acsnano.7b03369
doi: 10.1021/acsnano.7b03369
Qian, H.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. Inorg. Chem. 2011, 50, 10735. doi: 10.1021/ic2012292
doi: 10.1021/ic2012292
Li, M.; Tian, S.; Wu, Z. Nanoscale 2014, 6, 5714. doi: 10.1039/c4nr00658e
doi: 10.1039/c4nr00658e
Yao, C.; Chen, J.; Li, M.; Liu, L.; Yang, J.; Wu, Z. Nano Lett. 2015, 15, 1281. doi: 10.1021/nl504477t
doi: 10.1021/nl504477t
Liu, X.; Yuan, J.; Yao, C.; Chen, J.; Li, L.; Bao, X.; Yang, J.; Wu, Z. J. Phys. Chem. C 2017, 121, 13848. doi: 10.1021/acs.jpcc.7b01730
doi: 10.1021/acs.jpcc.7b01730
Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. ACS Nano 2016, 10, 7998. doi: 10.1021/acsnano.6b03964
doi: 10.1021/acsnano.6b03964
Hao Jiang , Yuan-Yuan He , Hai-Chao Liang , Meng-Jia Shang , Han-Han Lu , Chun-Hua Liu , Yin-Shan Meng , Tao Liu , Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Yongjing Deng , Feiyang Li , Zijian Zhou , Mengzhu Wang , Yongkang Zhu , Jianwei Zhao , Shujuan Liu , Qiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779