Citation: ZHOU Yang, LI Zhimin, ZHENG Kai, LI Gao. Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 786-791. doi: 10.3866/PKU.WHXB201709292 shu

Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters

  • Corresponding author: LI Gao, gaoli@dicp.ac.cn
  • Received Date: 13 September 2017
    Revised Date: 27 September 2017
    Accepted Date: 28 September 2017
    Available Online: 29 July 2017

    Fund Project: The project was supported by the Natural Science Foundation of Liaoning Province, China (20170540897)the Natural Science Foundation of Liaoning Province, China 20170540897

  • In the past decade, gold nanoclusters of atomic precision have been demonstrated as novel and promising materials for potential applications in catalysis and biotechnology because of their optical properties and photovoltaics. The Au36(SR)24 nanocluster is one of the most well-known clusters, which is directly converted from the Au38(SR)24 cluster through a "ligand-exchange" process. It consists of an Au28 kernel with a truncated face-centered cubic (FCC) framework exposing the (111) and (100) facets. Here we report a simple protocol to prepare Au36(SR)24 nanoclusters, ligated by aliphatic and aromatic thiolate ligands (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) via a "size-focusing" process. First, polydisperse Au nanoparticles were synthesized and isolated, and then reacted under harsh conditions in the presence of excess thiol ligands at relatively high etching temperatures (80 ℃). The as-synthesized Au36(SR)24 nanoclusters were characterized and analyzed by UV-Vis absorption spectroscopy, electrospray ionization (ESI), and matrix-assisted laser desorption ionization (MALDI) mass spectrometry, as well as thermogravimetric analysis (TGA). All the Au36(SR)24 nanoclusters showed two step-like optical absorption peaks at ~370 and 580 nm in the UV-vis spectra. Only one strong set of nanocluster-ion peaks centered at an m/z of 10517.0 was observed in the ESI mass spectrum of the Au36(SCH(CH3)Ph)24 nanocluster. This could be assigned to the [Au36(SCH(CH3)Ph)24Cs]+ species, and was a strong indicator of the high purity of the as-obtained Au36 cluster samples produced on a small scale. The TGA profile showed 31.67% organic weight loss of the nanocluster, matching well with the expected theoretical value of 31.71%. The Au-SR bond in the gold nanoclusters was broken at ~180 ℃ in a normal air atmosphere. Fragments of the Au36(SR)24 clusters capped with different thiolate ligands, which were mainly caused by the strong laser intensity during the analysis, were detected in the MALDI mass spectra. This interesting phenomenon was also observed in the case of Au25(SR)18, and could be due to the inherent properties of the Au-SR bond on the surface of the gold nanoclusters. Finally, the optical properties of the Au36(SR)24 nanoclusters were found to be influenced by the capping thiolate ligands. Compared to the UV-Vis spectrum of the Au36(SCH(CH3)Ph)24 cluster, the optical spectra of the other three Au36 clusters were red-shifted (~3 nm for Au36(SPh)24, 5 nm for Au36(SC6H4CH3)24, and 13 nm for the (Au36(SNap)24 clusters). This shift could be explained by the electron transfer occurring from the electron-rich aromatic ligands to the Au kernel. The electron transfer capacity followed the order ―SNap > ―SC6H4CH3 > ―SPh > ―SCH(CH3)Ph. Overall, this study demonstrates the effectiveness and promising application of ligand engineering for tailoring the electronic properties of Au nanoclusters.
  • 加载中
    1. [1]

      Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    2. [2]

      Hesari, M.; Ding, Z. F. Acc. Chem. Res. 2017, 50, 218. doi: 10.1021/acs.accounts.6b00441  doi: 10.1021/acs.accounts.6b00441

    3. [3]

      Zhou, Y.; Li, G. Acta Phys. -Chim. Sin. 2017, 33, 1297.  doi: 10.3866/PKU.WHXB201704101

    4. [4]

      Goswami, N.; Yao, Q. F.; Chen, T. K.; Xie, J. P. Coord. Chem. Rev. 2016, 329, 1. doi: 10.1016/j.ccr.2016.09.001  doi: 10.1016/j.ccr.2016.09.001

    5. [5]

      Li, Y. D.; Gao, Y. Chin. Sci. Bull. 2014, 59, 239. doi: 10.1007/s11434-013-0047-y  doi: 10.1007/s11434-013-0047-y

    6. [6]

      Li, G.; Jin, R. C. Acc. Chem. Res. 2013, 46, 1749. doi: 10.1021/ar300213z  doi: 10.1021/ar300213z

    7. [7]

      Li, Z. M.; Abroshan, H.; Liu, C.; Li, G. Curr. Org. Chem. 2017, 21, 476. doi: 10.2174/1385272820666161020152707  doi: 10.2174/1385272820666161020152707

    8. [8]

      Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Li, G.; Wang, F. Chin. J. Catal. 2016, 37, 1787.  doi: 10.1016/S1872-2067(16)62478-6

    9. [9]

      Xie, S. H.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. ACS Catal.2012, 2, 1519. doi: 10.1021/cs300252g  doi: 10.1021/cs300252g

    10. [10]

      Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. ACS Catal. 2017, 7, 3368. doi: 10.1021/acscatal.7b00239  doi: 10.1021/acscatal.7b00239

    11. [11]

      Liu, C.; Zhang, J. Y.; Huang, J. H.; Zhang, C. L.; Hong, F.; Zhou, Y.; Li, G. ChemSuSChem2017, 10, 1976. doi: 10.1002/cssc.201700407  doi: 10.1002/cssc.201700407

    12. [12]

      Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C. J.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. C. Chem. Mater. 2014, 26, 2777. doi: 10.1021/cm500260z  doi: 10.1021/cm500260z

    13. [13]

      Li, Z. M.; Yang, X. J.; Liu, C.; Wang, J.; Li, G. Pro. Nat. Sci.: Mater. Int. 2016, 26, 477. doi: 10.1016/j.pnsc.2016.09.007  doi: 10.1016/j.pnsc.2016.09.007

    14. [14]

      Jin, R. C.; Qian, H. F.; Wu, Z.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1, 2903. doi: 10.1021/jz100944k  doi: 10.1021/jz100944k

    15. [15]

      Liu, C.; Lin, J. Z.; Shi, Y. W.; Li, G. Nanoscale 2015, 7, 5987. doi: 10.1039/c5nr00543d  doi: 10.1039/c5nr00543d

    16. [16]

      Liao, L. W.; Yao, C. H.; Wang, C. M.; Tian, S. B.; Chen, J. S.; Li, M. B.; Xia, N.; Yan, N.; Wu, Z. K. Anal. Chem. 2016, 88, 11297. doi: 10.1021/acs.analchem.6b03428  doi: 10.1021/acs.analchem.6b03428

    17. [17]

      Wang, S. X.; Yu, H. Z.; Zhu, M. Z. Sci. China-Chem. 2016, 59, 206. doi: 10.1007/s11426-015-5484-9  doi: 10.1007/s11426-015-5484-9

    18. [18]

      Luo, Z. T.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D. E.; Xie, J. P.J. Am. Chem. Soc. 2014, 136, 10577. doi: 10.1021/ja505429f  doi: 10.1021/ja505429f

    19. [19]

      Liu, C.; Li, G.; Pang, G. S.; Jin, R. C. RSC Adv. 2013, 3, 9778. doi: 10.1039/c3ra40775f  doi: 10.1039/c3ra40775f

    20. [20]

      Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N.; Yoon, B.; Barnett, R.; Whetten, R. L.; Landman, U.; Jin, R. C. Angew. Chem. Int. Ed. 2012, 124, 13114. doi: 10.1002/anie.201207098  doi: 10.1002/anie.201207098

    21. [21]

      Zeng, C. J.; Liu, C.; Pei, Y.; Jin, R. C. ACS Nano 2013, 7, 6138. doi: 10.1021/nn401971g  doi: 10.1021/nn401971g

    22. [22]

      Chen, Y. D.; Wang, J.; Liu, C.; Li, Z. M.; Li, G. Nanoscale 2016, 8, 10059. doi: 10.1039/c5nr08338a  doi: 10.1039/c5nr08338a

    23. [23]

      Adachi, K.; Chayama, K.; Watarai, H. Langmuir 2006, 22, 1630. doi: 10.1021/la0526131  doi: 10.1021/la0526131

    24. [24]

      Nimmala, P.; Dass, A. J. Am. Chem. Soc. 2011, 133, 9175. doi: 10.1021/ja201685f  doi: 10.1021/ja201685f

    25. [25]

      Nimmala, P.; Knoppe, S.; Jupally, V.; Delcamp, J.; Aikens, C.; Dass, A. J. Phys. Chem. B 2014, 118, 14157. doi: 10.1021/jp506508x  doi: 10.1021/jp506508x

    26. [26]

      Das, A.; Zeng, C. J.; Li, G.; Li, T.; Rosi, N.; Jin, R. C. J. Phys. Chem. A 2014, 118, 8264. doi: 10.1021/jp501073a.  doi: 10.1021/jp501073a

    27. [27]

      Tracy, J. B.; Crowe, M. C.; Parker, J. F.; Hampe, O.; Fields-Zinna, C. A.; Dass, A.; Murray, R. W. J. Am. Chem. Soc. 2007, 129, 16209. doi: 10.1021/ja076621a  doi: 10.1021/ja076621a

    28. [28]

      Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. ACS Nano 2016, 10, 7998. doi: 10.1021/acsnano.6b03964  doi: 10.1021/acsnano.6b03964

  • 加载中
    1. [1]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    2. [2]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    3. [3]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    6. [6]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    7. [7]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    8. [8]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    9. [9]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    10. [10]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    11. [11]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    12. [12]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    13. [13]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    14. [14]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    15. [15]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    16. [16]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    17. [17]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    20. [20]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

Metrics
  • PDF Downloads(11)
  • Abstract views(568)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return