Revealing Molecular Electronic Structure via Analysis of Valence Electron Density
- Corresponding author: LU Tian, sobereva@sina.com
Citation: LU Tian, CHEN Qinxue. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinica, ;2018, 34(5): 503-513. doi: 10.3866/PKU.WHXB201709252
Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2001; pp. 24–28.
Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
doi: 10.1021/ja00326a036
Fu, R.; Lu, T.; Chen, F. W. Acta Phys. -Chim. Sin. 2014, 30, 628.
doi: 10.3866/PKU.WHXB201401211
Cao, J. S.; Ren, Q.; Chen, F. W.; Lu, T. Sci. China Chem. 2015, 45, 1281.
doi: 10.1007/s11426-015-5494-7
Lu, T.; Chen, F. W. Acta Phys. -Chim. Sin. 2012, 28, 1.
doi: 10.3866/PKU.WHXB2012281
Bader, F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, USA, 1994.
Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules-from Solid State to DNA and Drug Design; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007.
Lu, T.; Chen, F. J. Phys. Chem. A 2013, 117, 3100. doi: 10.1021/jp4010345
doi: 10.1021/jp4010345
Gillespie, R. J.; Popelier, P. L. A. Chemical Bonding and Molecular Geometry-From Lewis to Electron Densities; Oxford University Press: New York, NY, USA, 2001; pp. 163–180.
Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397. doi: 10.1063/1.458517
doi: 10.1063/1.458517
Lu, T.; Chen, F. W. Acta Phys. -Chim. Sin. 2011, 27, 2786.
doi: 10.3866/PKU.WHXB20112786
Poater, J.; Duran, M.; Solà, M.; Silvi, B. Chem. Rev. 2005, 105, 3911. doi: 10.1021/cr030085x
doi: 10.1021/cr030085x
Manzetti, S.; Lu, T. RSC Adv. 2013, 3, 25881. doi: 10.1039/c3ra41572d
doi: 10.1039/c3ra41572d
Manzetti, S.; Lu, T.; Behzadi, H.; Estrafili, M. D.; Thi, H. L. T.; Vach, H. RSC Adv. 2015, 5, 78192. doi: 10.1039/C5RA17148B
doi: 10.1039/C5RA17148B
Emamian, S.; Lu, T.; Moeinpour, F. RSC Adv. 2015, 5, 62248. doi: 10.1039/C5RA08614K
doi: 10.1039/C5RA08614K
Schmider, H. L.; Becke, A. D. J. Mol. Struct. THEOCHEM 2000, 527, 51. doi: 10.1016/s0166-1280(00)00477-2
doi: 10.1016/s0166-1280(00)00477-2
Astakhov, A. A.; Tsirelson, V. G. Chem. Phys. 2014, 435, 49. doi: 10.1016/j.chemphys.2014.03.006
doi: 10.1016/j.chemphys.2014.03.006
De Silva, P.; Corminboeuf, C. J. Chem. Theory Comput. 2014, 10, 3745. doi: 10.1021/ct500490b
doi: 10.1021/ct500490b
Jacobsen, H. Chem. Phys. Lett. 2013, 582, 144. doi: 10.1016/j.cplett.2013.07.027
doi: 10.1016/j.cplett.2013.07.027
Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129. doi: 10.1007/bf00549096
doi: 10.1007/bf00549096
Lu, T.; Chen, F. J. Theor. Comp. Chem. 2012, 11, 163. doi: 10.1142/S0219633612500113
doi: 10.1142/S0219633612500113
Dunitz, J. D.; Schweizer, W. B.; Seiler, P. Helv. Chim. Acta 1983, 66, 123. doi: 10.1002/hlca.19830660113
doi: 10.1002/hlca.19830660113
Eisenstein, M. Acta Crystallogr. Sect. B 1979, 35, 2614. doi: 10.1107/S0567740879010001
doi: 10.1107/S0567740879010001
Cai, Y.; Luo, S.; Wang, Z.; Xiong, J.; Gu, H. J. Materiomics 2017, 3, 130. doi: 10.1016/j.jmat.2016.12.005
doi: 10.1016/j.jmat.2016.12.005
Cameron, T. S.; Borecka, B.; Kwiatkowski, W. J. Am. Chem. Soc. 1994, 116, 1211. doi: 10.1021/ja00083a006
doi: 10.1021/ja00083a006
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian Inc.: Wallingford, CT, 2016.
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
doi: 10.1021/j100096a001
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. doi: 10.1039/b508541a
doi: 10.1039/b508541a
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885
doi: 10.1002/jcc.22885
Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
doi: 10.1007/s00214-007-0310-x
Wüest, A.; Merkt, F. J. Chem. Phys. 2003, 118, 8807. doi: 10.1063/1.1566944
doi: 10.1063/1.1566944
Santos, J. C.; Andres, J.; Aizman, A.; Fuentealba, P. J. Chem. Theory Comput. 2005, 1, 83. doi: 10.1021/ct0499276
doi: 10.1021/ct0499276
Politzer, P.; Lane, P.; Concha, M. C.; Ma, Y.; Murray, J. S. J. Mol. Model. 2007, 13, 305. doi: 10.1007/s00894-006-0154-7
doi: 10.1007/s00894-006-0154-7
Clark, T. WIREs: Comp. Mol. Sci. 2013, 3, 13. doi: 10.1002/wcms.1113
doi: 10.1002/wcms.1113
Kozuch, S.; Martin, J. M. L. J. Chem. Theory Comput. 2013, 9, 1918. doi: 10.1021/ct301064t
doi: 10.1021/ct301064t
Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons: West Sussex, UK, 2007; pp. 487–492.
Silvi, B.; Savin, A. Nature 1994, 371, 683. doi: 10.1038/371683a0
doi: 10.1038/371683a0
Fuentealba, P.; Chamorro, E.; Santos, J. C. Understanding and Using the Electron Localization Function. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé, A., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2007; p. 57.
Bratsch, S. G. J. Chem. Educ. 1985, 62, 101. doi: 10.1021/ed062p101
doi: 10.1021/ed062p101
Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds between Metal Atoms; Springer Science and Business Media, Inc.: New York, USA, 2005.
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Chao Ma , Peng Guo , Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099