Citation: LIU Jiao, HUO Jicun, ZHANG Min, DONG Xiandui. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 424-436. doi: 10.3866/PKU.WHXB201709082 shu

Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms

  • Corresponding author: ZHANG Min, zm2016@email.tjut.edu.cn DONG Xiandui, dxd@ciac.ac.cn
  • Received Date: 15 August 2017
    Revised Date: 4 September 2017
    Accepted Date: 4 September 2017
    Available Online: 8 April 2017

    Fund Project: the National Science Foundation of China 51473158the National Science Foundation of China 91233206The project was supported by the National Science Foundation of China (51473158, 91233206)

  • The ultrafast photoluminescence dynamics of three organic dyes—C210, C214, and C216—with different conjugated linkers containing various heteroatoms, such as bifuran, bithiophene and biselenophene, in combination with dihexyloxy-substituted triphenylamine (TPA) as the electron donor and cyanoacrylic acid (CA) as the electron acceptor have been studied systematically. The excited-state dynamics of the three dyes were investigated in detail in different media: tetrahydrofuran (THF) and toluene (PhMe) solutions, polymethyl methacrylate (PMMA) and polystyrene (PS) polymer films, and the surfaces of alumina and titania films in contact with an ionic liquid composite electrolyte. These dyes were found to feature dynamic Stokes shifts in all the aforementioned media, indicating stepwise intramolecular relaxations of the non-equilibrium excited state. The electron injection yield was distinctly lower for the non-equilibrium excited state than the equilibrium excited states, which can be ascribed to the competition between torsional relaxation and electron injection. A broad time scale over one magnitude of order was presented for electron injection due to the great energy losses originating from the multiple torsional relaxations, which should be controlled for future dye design and device development. Moreover, despite the shorter lifetimes of the equilibrium excited states for C210 and C216 than C214, the electron injection yields of equilibrium excited states for all the dyes are comparable due to the accelerated electron injection rate.
  • 加载中
    1. [1]

      O'Regan, B. C.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0  doi: 10.1038/353737a0

    2. [2]

      Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Ed. 2009, 48, 2474. doi: 10.1002/anie.200804709  doi: 10.1002/anie.200804709

    3. [3]

      Imahori, H.; Umeyama, T.; Ito, S. Acc. Chem. Res. 2009, 42, 1809. doi: 10.1021/ar900034t  doi: 10.1021/ar900034t

    4. [4]

      Clifford, J. N.; Martínez-Ferrero, E.; Viterisi, A.; Palomares, E. Chem. Soc. Rev. 2011, 40, 1635. doi: 10.1039/B920664G  doi: 10.1039/B920664G

    5. [5]

      Wonneberger, C.; Li, H. Adv. Mater. 2012, 24, 613. doi: 10.1002/adma.201104447  doi: 10.1002/adma.201104447

    6. [6]

      Wu, Y.; Zhu, W. Chem. Soc. Rev. 2013, 42, 2039. doi: 10.1039/C2CS35346F  doi: 10.1039/C2CS35346F

    7. [7]

      Liang, M.; Chen, J. Chem. Soc. Rev., 2013, 42, 3453. doi: 10.1039/C3CS35372A  doi: 10.1039/C3CS35372A

    8. [8]

      Lin, Y. Z.; Huang, C. H.; Chang, Y. J.; Yeh, C. W.; Chin, T. M.; Chi, K. M.; Chou, P. T.; Watanabe, M.; Chow, T. J. Tetrahedron 2014, 70, 262. doi: 10.1016/j.tet.2013.11.072  doi: 10.1016/j.tet.2013.11.072

    9. [9]

      Li, H.; Yang, Y.; Hou, Y.; Tang, R.; Duan, T.; Chen, J.; Wang, H.; Han, H.; Peng, T.; Chen, X.; Li, Q.; Li, Z. ACS Sustainable Chem. Eng. 2014, 2, 1776. doi: 10.1021/sc500234a  doi: 10.1021/sc500234a

    10. [10]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M. Chem. Commun. 2015, 51, 15894. doi: 10.1039/C5CC06759F  doi: 10.1039/C5CC06759F

    11. [11]

      Yao, Z.; Zhang, M.; Li, R.; Yang, L.; Qiao, Y.; Wang, P. Angew. Chem. Int. Ed. 2015, 127, 6092. doi: 10.1002/ange.201501195  doi: 10.1002/ange.201501195

    12. [12]

      Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P. Energy Environ. Sci. 2015, 8, 3192. doi: 10.1039/C5EE02822A  doi: 10.1039/C5EE02822A

    13. [13]

      Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P. J. Am. Chem. Soc. 2015, 137, 3799. doi: 10.1021/jacs.5b01537  doi: 10.1021/jacs.5b01537

    14. [14]

      Li, H.; Fang, M.; Xu, T.; Hou, Y.; Tang, R.; Chen, J.; Liu, L.; Han, H.; Peng, T.; Li, Q.; Li, Z. Org. Chem. Front. 2016, 3, 233. doi: 10.1039/C5QO00377F  doi: 10.1039/C5QO00377F

    15. [15]

      Yang, L.; Li, Y.; Chen, S.; Zhang, J.; Zhang, M.; Wang, P. Acta Phys. -Chim. Sin. 2016, 32, 329.  doi: 10.3866/PKU.WHXB201511031

    16. [16]

      Weng, X. L.; Wang, Y.; Jia, C. Y.; Wan, Z. Q.; Chen, X. M.; Yao, X. J. Acta Phys. -Chim. Sin. 2016, 32, 1990.  doi: 10.3866/PKU.WHXB201605031

    17. [17]

      Xiao, A.; Lu, H.; Zhao, Y.; Luo, G. G. Acta Phys. -Chim. Sin. 2016, 32, 2968.  doi: 10.3866/PKU.WHXB201609194

    18. [18]

      Li, Z. G.; Lu, T.; Gao, H.; Zhang, Q.; Li, M. J.; Ren, W.; Lu, W. C. Acta Phys. -Chim. Sin. 2017, 33, 1789.  doi: 10.3866/PKU.WHXB201705082

    19. [19]

      Ren, Y.; Liu, J.; Zheng, A.; Dong, X.; Wang, P. Adv. Sci. 2017, 1700099. doi: 10.1002/advs.201700099  doi: 10.1002/advs.201700099

    20. [20]

      Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K.; Moser, J.; Grätzel, M. J. Phys. Chem. 1996, 100, 9577. doi: 10.1021/jp960155m  doi: 10.1021/jp960155m

    21. [21]

      Tachibana, Y.; Rubtsov, I. V.; Montanari, I.; Yoshihara, K.; Klug, D. R.; Durrant, J. R. J. Photoch. Photobio. A 2001, 142, 215. doi: 10.1016/S1010-6030(01)00516-0  doi: 10.1016/S1010-6030(01)00516-0

    22. [22]

      Luo, L.; Lo, C. F.; Lin, C. Y.; Chang, I. J.; Diau, W. G. J. Phys. Chem. B 2006, 110, 410. doi: 10.1021/jp055365q  doi: 10.1021/jp055365q

    23. [23]

      Martín, C.; Ziółek, M.; Marchena, M.; Douhal, A. J. Phys. Chem. C 2011, 115, 23183. doi: 10.1021/jp203489u  doi: 10.1021/jp203489u

    24. [24]

      Adamo, C.; Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845. doi: 10.1039/C2CS35394F  doi: 10.1039/C2CS35394F

    25. [25]

      Fakis, M.; Hrobárik, P.; Yushchenko, O.; Sigmundová, I.; Koch, M.; Rosspeintner, A.; Stathatos, E.; Vauthey, E. J. Phys. Chem. C 2014, 118, 28509. doi: 10.1021/jp509971q  doi: 10.1021/jp509971q

    26. [26]

      Ai, X.; Guo, J.; Anderson, N. A.; Lian, T. J. Phys. Chem. B 2004, 108, 12795. doi: 10.1021/jp0483977  doi: 10.1021/jp0483977

    27. [27]

      Fakis, M.; Stathatos, E.; Tsigaridas, G.; Giannetas, V.; Persephonis, P. J. Phys. Chem. C 2011, 115, 13429. doi: 10.1021/jp201143n  doi: 10.1021/jp201143n

    28. [28]

      Yang, L.; Chen, S.; Zhang, J.; Wang, J.; Zhang, M.; Dong, X.; Wang, P. J. Mater. Chem. A 2017, 5, 3514. doi: 10.1039/C6TA10506H  doi: 10.1039/C6TA10506H

    29. [29]

      Li, Y.; Wang, J.; Yuan, Y.; Zhang, M.; Dong, X.; Wang, P. Phys. Chem. Chem. Phys. 2017, 19, 2549. doi: 10.1039/C6CP07916D.  doi: 10.1039/C6CP07916D

    30. [30]

      Chen, S.; Yang, L.; Zhang, J.; Yuan, Y.; Dong, X.; Wang, P. ACS Photonics 2017, 4, 165. doi: 10.1021/acsphotonics.6b00772  doi: 10.1021/acsphotonics.6b00772

    31. [31]

      Li, R.; Zhang, M.; Yan, C.; Yao, Z.; Zhang, J.; Wang, P. ChemSusChem 2015, 8, 97. doi: 10.1002/cssc.201402806  doi: 10.1002/cssc.201402806

    32. [32]

      Yang, L.; Yao, Z.; Liu, J.; Wang, J.; Wang, P. ACS Appl. Mater. Inter. 2016, 8, 9839. doi: 10.1021/acsami.6b02075  doi: 10.1021/acsami.6b02075

    33. [33]

      Shank, C. V. Science 1986, 233, 1276. doi: 10.1126/Science.233.4770.1276  doi: 10.1126/Science.233.4770.1276

    34. [34]

      Fleming, G. R.; van Grondelle, R. Current opinion in structural biology: Femtosecond spectroscopy of photosynthetic lightharvesting systems; Elsevier: Holland, 1997; Vol. 7, pp. 738–748.

    35. [35]

      McCamant, D. W.; Kukura, P.; Mathies, R. A. J. Phys. Chem. A2003, 107, 8208. doi: 10.1021/jp030147n  doi: 10.1021/jp030147n

    36. [36]

      Trotzky, S.; Hoyer, T.; Tuszynski, W.; Lienau, C.; Parisi, J. J. Phys. D: Appl. Phys. 2009, 42, 055105. doi: 10.1088/0022-3727/42/5/055105  doi: 10.1088/0022-3727/42/5/055105

    37. [37]

      Li, R.; Lv, X.; Shi, D.; Zhou, D.; Cheng, Y.; Zhang, G.; Wang, P. J. Phys. Chem. C 2009, 113, 7469. doi: 10.1021/jp900972v  doi: 10.1021/jp900972v

    38. [38]

      Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 2003, 107, 14336. doi: 10.1021/jp0365965  doi: 10.1021/jp0365965

    39. [39]

      Liu, J.; Li, R.; Si, X.; Zhou, D.; Shi, Y.; Wang, Y.; Jing, X.; Wang, P. Energy Environ. Sci. 2010, 3, 1924. doi: 10.1021/jp0365965  doi: 10.1021/jp0365965

    40. [40]

      Cai, N.; Wang, Y.; Xu, M.; Fan, Y.; Li, R.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 1846. doi: 10.1002/adfm.201202562  doi: 10.1002/adfm.201202562

    41. [41]

      Zhang, J.; Yao, Z.; Cai, N.; Yang, L.; Xu, M.; Li, R.; Zhang, M.; Dong, X.; Wang, P. Energy Environ. Sci. 2013, 6, 1604. doi: 10.1039/C3EE40375K  doi: 10.1039/C3EE40375K

    42. [42]

      Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M.; J. Stat. Softw. 2012, 49, 1. doi: 10.18637/jss.v049.i03  doi: 10.18637/jss.v049.i03

    43. [43]

      Lanzani G., Nisoli M., De Silvestri S., Tubino R.. Chemical Physics Letters: Femtosecond vibrational and torsional energy redistribution in photoexcited oligothiophenes[J]. Elsevier: Holland, 1996,Vol. 251:pp. 339-345.

    44. [44]

      Glasbeek, M.; Zhang, H. Chem. Rev. 2004, 104, 1929. doi: 10.1021/cr0206723  doi: 10.1021/cr0206723

    45. [45]

      Amdursky, N.; Erez, Y.; Huppert, D. Acc. Chem. Res. 2012, 45, 1548. doi: 10.1021/ar300053p  doi: 10.1021/ar300053p

    46. [46]

      Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. Acc. Chem. Res. 2014, 47, 1155. doi: 10.1021/ar400263p  doi: 10.1021/ar400263p

    47. [47]

      Oliver, T. A. A.; Lewis, N. H. C.; Fleming, G. R. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 10061. doi: 10.1073/pnas.1409207111  doi: 10.1073/pnas.1409207111

    48. [48]

      Klymchenko, A. S.; Demchenko, A. R. Methods in Enzymology: Chapter 3 Multiparametric Probing of Microenvironment with Solvatochromic Fluorescent Dyes; Elsevier: Holland, 2008; Vol. 450, pp. 37–58.

    49. [49]

      Shemesh, D.; Sobolewski, A. L.; Domcke, W. Phys. Chem. Chem. Phys. 2010, 12, 4899. doi: 10.1039/B927024H  doi: 10.1039/B927024H

    50. [50]

      Qian, J.; Brouwer, A. M. Phys. Chem. Chem. Phys. 2010, 12, 12562. doi: 10.1039/C003419C  doi: 10.1039/C003419C

    51. [51]

      O'Regan, B. C.; Durrant, J. R. Acc. Chem. Res. 2009, 42, 1799. doi: 10.1021/ar900145z  doi: 10.1021/ar900145z

    52. [52]

      Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Séro, I.; Bisquert, J. Phys. Chem. Chem. Phys. 2011, 13, 9083. doi: 10.1039/C0CP02249G  doi: 10.1039/C0CP02249G

    53. [53]

      Bisquert, J. ChemPhysChem 2011, 12, 1633. doi: 10.1002/cphc.201100248  doi: 10.1002/cphc.201100248

  • 加载中
    1. [1]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    2. [2]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    3. [3]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    4. [4]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    7. [7]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    8. [8]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    9. [9]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    10. [10]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    13. [13]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    14. [14]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    15. [15]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    16. [16]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    17. [17]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    18. [18]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

Metrics
  • PDF Downloads(7)
  • Abstract views(279)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return