Citation: DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 314-322. doi: 10.3866/PKU.WHXB201709042 shu

Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT

  • Corresponding author: DING Xiaoqin, dingxiaoqin2008@126.com
  • Received Date: 4 August 2017
    Revised Date: 24 August 2017
    Accepted Date: 24 August 2017
    Available Online: 4 March 2017

  • Following the exceptional success of density functional theory (DFT) in the realm of quantum chemistry, the conceptual DFT (CDFT) method has been widely used for describing the dynamic reactivity index of reactive chemicals in recent years. Reactive chemicals refer to those that bind covalently to biological macromolecules; in other words, the binding of the ligand with the receptor or enzyme involved with the breakage of the old bond and the process of formation of the new bond. Organophosphorus AChE irreversible inhibitors are reactive chemicals. In the present work, we calculated the reactivity descriptors for AChE irreversible inhibitors (organophosphate compounds), including some pesticides and chemical warfare agents, by the CDFT method at the B3LYP/6-311++G(2d, 3p)/gas, B3LYP/6-311++G(2d, 3p)/CPCM/water, MP2/6-311++G(2d, 3p)/gas, MP2/6-311++G(2d, 3p)/CPCM/water levels, in order to analyze their reactivity and determine the optimal parameters for calculation. Reactivity descriptors such as chemical potential (μ), vertical ionization energy (I), vertical electronic affinity (A), molecular absolute hardness (η), electrophilicity (ω), condensed atomic Fukui function, and varied natural bond orbital (NBO) bond order, were used to identify changes in the reactivity of these compounds in the gas and aqueous phases with the conductor-like polarizable continuum model (CPCM) model. The values of the reactivity descriptors and quantitative structure-property relationship (QSPR) models indicated that: the center of the phosphor atom (P) was the nucleophilic reaction site with AChE for most of selected compounds; substituted tertiaryamine protonization in organophosphorus compounds greatly enhanced the electrophilic attackingability of the P reaction center; and as a whole, conformation did not have a significant effect on the reactivity for theDFT/B3LYP method, with an exception for the MP2 method which showed a comparative instability in results. The initial QSPR model in training sets of pLD50 with stepwise regression analysis shows that the B3LYP/6-311++G(2d, 3p)/gas level can provide a better result than the MP2 level and in the water phase, and provides a good representation of the molecular structure-toxicity relationship. These predictions for the compounds surpass those obtained by conventional QSPR equations, which do not consider electron transfer in the phosphorylated or aged process, thereby providing unreliable predictions. The proposed reactivity concept using the CDFT principle possesses a definite physical meaning, reflects the dynamic reactivity from the ground state of the molecular structure, and can be applied to toxicity predictions for AChE irreversible inhibitors with greater precision and stability.
  • 加载中
    1. [1]

      Mekenyan, O. G.; Veith, G. D. SAR and QSAR in Environ. Res. 1994, 2, 129. doi: 10.1080/10629369408028844  doi: 10.1080/10629369408028844

    2. [2]

      Katagi, K. Rev. Environ. Contam. Toxicol. 2002, 175, 79. doi: 10.1007/978-1-4757-4260-2  doi: 10.1007/978-1-4757-4260-2

    3. [3]

      Karelson, M.; Lobanov, V. S. Chem. Rev. 1996, 96, 1027. doi: 10.1021/cr950202r  doi: 10.1021/cr950202r

    4. [4]

      Donald, M. M.; Karen, M. B.; Irwin, K.; Richard, E. S. Arch. Toxicol. 2006, 80, 756. doi: 10.1007/s00204-006-0120-2  doi: 10.1007/s00204-006-0120-2

    5. [5]

      Ding, J. J.; Ding, X. Q.; Pan, L.; Chen, J. S. Acta. Phys. -Chim. Sin. 2014, 30, 2157. 

    6. [6]

      Ding, J. J.; Ding, X. Q.; Zhao, L. F.; Chen, J. S. Acta Pharm. Sin. 2005, 40, 340.  doi: 10.3321/j.issn:0513-4870.2005.04.011

    7. [7]

      Katritzky, A. R.; Kuanar, M.; Slavov, S.; Dennis Hall, C. Chem. Rev. 2010, 110, 5714. doi: 10.1021/cr900238d  doi: 10.1021/cr900238d

    8. [8]

      Parr, R. G.; Yang, W. Annu. Rev. Phys. Chern. 1995, 46, 701. doi: 10.1146/annurev.pc.46.100195.003413  doi: 10.1146/annurev.pc.46.100195.003413

    9. [9]

      John, C. H. J. Am. Chem. Soc. 2010, 132, 7558. doi: 10.1021/ja1030744  doi: 10.1021/ja1030744

    10. [10]

      Geerlings, P. K.; De Profit, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    11. [11]

      Liu, S. -B. Acta Phys. -Chim. Sin. 2009, 25, 5.  doi: 10.3866/PKU.WHXB20090332
       

    12. [12]

      Bueno, P. R.; Miranda, D.A. Phys. Chem. Chem. Phys. 2017, 19, 6184. doi: 10.1039/c6cp02504h.  doi: 10.1039/c6cp02504h

    13. [13]

      James, S. M. A.; Junia, M.; Paul, W. A. J. Chem. Theory Comput. 2007, 3, 358. doi: 10.1021/ct600164j  doi: 10.1021/ct600164j

    14. [14]

      Pérez, P.; Yepes, D.; Jaque, P.; Chamorro, E.; Domingo, L. R.; Rojas, R. S.; Toro-Labbé, A. Phys. Chem. Chem. Phys. 2015, 17, 10715. doi: 10.1039/c5cp00306g  doi: 10.1039/c5cp00306g

    15. [15]

      Domingo. L. R.; Ríos-Gutiérrez. M.; Pérez P. Molecules 2016, 21, 748. doi: 10.3390/molecules21060748  doi: 10.3390/molecules21060748

    16. [16]

      Chattaraj, P. K.; Roy, D. R. Chem. Rev. 2007, 107, PR46. doi: 10.1021/cr078014b  doi: 10.1021/cr078014b

    17. [17]

      Sablon, N.; Proft, F. D.; Ayers, P. W.; Geerlings, P. K. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577  doi: 10.1021/ct1004577

    18. [18]

      Tim, F.; Sablon, N.; Proft, F. D.; Ayers, P. W.; Geerlings, P. K. J. Chem. Theory Comput. 2008, 4, 1065. doi: 10.1021/ct800027e  doi: 10.1021/ct800027e

    19. [19]

      Semenyuk, Y. P.; Morozov, P. G.; Burov, O. N.; Kletskii, M. K.; Lisovin, A. V.; Kurbatov, S. V.; Terrier, F. Tetrahedron 2016, 72, 2254. doi: 10.1016/j.tet.2016.03.024  doi: 10.1016/j.tet.2016.03.024

    20. [20]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108. doi: 10.1063/1.2918731  doi: 10.1063/1.2918731

    21. [21]

      http://www.drugfuture.com/toxic/search.aspx. (accessed March 28, 2013).

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision B.04; Wallingford CT, Pittsburgh, PA: Gaussian Inc., 2009.

    23. [23]

      Cerius2, Version 4.5; Accelrys Inc.: San Diego, CA 92121, USA, 1999.

    24. [24]

      ACD lab 12.0 software; Advanced Chemistry Development, Inc.: Canada, 2010.

    25. [25]

      HyperChem7.0(Beta1.04 for Evaluation copy) Software; Hypercube, Inc.: Gainesville, 2002.

    26. [26]

      Victor, E. K.; Eugene, N. M.; Anatoly, G. A. QSAR & Comb. Sci. 2009, 6-7, 664. doi: 10.1002/qsar.200860117

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    11. [11]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(9)
  • Abstract views(372)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return