Citation: CHEN Ke, SUN Zhenhua, FANG Ruopian, LI Feng, CHENG Huiming. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 377-390. doi: 10.3866/PKU.WHXB201709001 shu

Development of Graphene-based Materials for Lithium-Sulfur Batteries

  • Corresponding author: LI Feng, fli@imr.ac.cn CHENG Huiming, cheng@imr.ac.cn
  • Received Date: 24 July 2017
    Revised Date: 21 August 2017
    Accepted Date: 22 August 2017
    Available Online: 1 April 2017

    Fund Project: the National Key R & D Program of China 2014CB932402the "Strategic Priority Research Program" of the Chinese Academy of Sciences XDA09010104the National Natural Science Foundation of China 51525206the Youth Innovation Promotion Association of the Chinese Academy of Sciences 2015150the Key Research Program of the Chinese Academy of Sciences KGZD-EW-T06the National Natural Science Foundation of China 51521091The project was supported by the National Key R & D Program of China (2016YFA0200102, 2016YFB0100100, 2014CB932402), the National Natural Science Foundation of China (51525206, 51521091, 51372253, U1401243), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA09010104), the Key Research Program of the Chinese Academy of Sciences (KGZD-EW-T06), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015150), the Natural Science Foundation of Liaoning Province, China (2015021012), the Institute of Metal Research (2015-PY03), and the CAS/SAFEA International Partnership Program for Creative Research Teamsthe National Natural Science Foundation of China U1401243the National Natural Science Foundation of China 51372253the Institute of Metal Research 2015-PY03the National Key R & D Program of China 2016YFA0200102the Natural Science Foundation of Liaoning Province, China 2015021012the National Key R & D Program of China 2016YFB0100100

  • Lithium-sulfur (Li-S) batteries are promising electrochemical energy storage systems because of their high theoretical energy density, natural abundance, and environmental benignity. However, several problems such as the insulating nature of sulfur, high solubility of polysulfides, large volume variation of the sulfur cathode, and safety concerns regarding the lithium anode hinder the commercialization of Li-S batteries. Graphene-based materials, with advantages such as high conductivity and good flexibility, have shown effectiveness in realizing Li-S batteries with high energy density and high stability. These materials can be used as the cathode matrix, separator coating layer, and anode protection layer. In this review, the recent progress of graphene-based materials used in Li-S batteries, including graphene, functionalized graphene, heteroatom-doped graphene, and graphene-based composites, has been summarized. And perspectives regarding the development trend of graphene-based materials for Li-S batteries have been discussed.
  • 加载中
    1. [1]

      Manthiram, A.; Fu, Y. Z.; Su, Y. S. Acc. Chem. Res. 2013, 46, 1125. doi: 10.1021/ar300179v  doi: 10.1021/ar300179v

    2. [2]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    3. [3]

      Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823  doi: 10.1002/adma.201606823

    4. [4]

      Yu, M.; Li, R.; Wu, M.; Shi, G. Energy Storage Materials 2015, 1, 51. doi: 10.1016/j.ensm.2015.08.004  doi: 10.1016/j.ensm.2015.08.004

    5. [5]

      Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460  doi: 10.1038/nmat2460

    6. [6]

      Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Qian, X.; Hou, P. X.; Cheng, H. M.; Liu, C.; Li, F. ACS Nano 2016, 10, 8676. doi: 10.1021/acsnano.6b04019  doi: 10.1021/acsnano.6b04019

    7. [7]

      Wang, D. W.; Zhou, G. M.; Li, F.; Wu, K. H.; Lu, G. Q.; Cheng, H. M.; Gentle, I. R. Phys. Chem. Chem. Phys. 2012, 14, 8703. doi: 10.1039/c2cp40808b  doi: 10.1039/c2cp40808b

    8. [8]

      Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Nano Lett. 2011, 11, 2644. doi: 10.1021/nl200658a  doi: 10.1021/nl200658a

    9. [9]

      Su, Y. S.; Manthiram, A. Nat. Commun. 2012, 3, 6. doi: 10.1038/ncomms2163  doi: 10.1038/ncomms2163

    10. [10]

      Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S.; Li, F.; Cheng, H. M. Adv. Mater. 2015, 27, 641. doi: 10.1002/adma.201404210  doi: 10.1002/adma.201404210

    11. [11]

      Song, R. S.; Fang, R. P.; Wen, L.; Shi, Y.; Wang, S.; Li, F. J. Power Sources 2016, 301, 179. doi: 10.1016/j.jpowsour.2015.10.007  doi: 10.1016/j.jpowsour.2015.10.007

    12. [12]

      Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. ACS Appl. Mater. Interfaces 2016, 8, 25193. doi: 10.1021/acsami.6b05647  doi: 10.1021/acsami.6b05647

    13. [13]

      Duan, B. C.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Yu, Z. B.; Zhao, H. L.; Qiu, J. Y.; Yang, Y. S. J. Mater. Chem. A 2013, 1, 13261. doi: 10.1039/c3ta12634j  doi: 10.1039/c3ta12634j

    14. [14]

      Tang, X. N.; Sun, Z. H.; Chen K.; Yang, H. C.; Zhuo, S. P.; Li, F. Energy Storage Science and Technology 2017, 6, 345.  doi: 10.12028/j.issn.2095-4239.2017.0018

    15. [15]

      Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Adv. Energy Mater. 2014, 4, 8. doi: 10.1002/aenm.201301473  doi: 10.1002/aenm.201301473

    16. [16]

      Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. ACS Nano 2014, 8, 9295. doi: 10.1021/nn503220h  doi: 10.1021/nn503220h

    17. [17]

      Li, J.; Wu, J.; Zhang, T.; Huang, L. Acta Phys. -Chim. Sin. 2017, 33, 968.  doi: 10.3866/PKU.WHXB201702093

    18. [18]

      Zhou, G.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. Energy Environ. Sci. 2012, 5, 8901. doi: 10.1039/c2ee22294a  doi: 10.1039/c2ee22294a

    19. [19]

      Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. Adv. Mater. 2016, 28, 3374. doi: 10.1002/adma.201506014  doi: 10.1002/adma.201506014

    20. [20]

      Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Nano Lett. 2011, 11, 4462. doi: 10.1021/nl2027684  doi: 10.1021/nl2027684

    21. [21]

      Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2015, 11, 356. doi: 10.1016/j.nanoen.2014.11.025  doi: 10.1016/j.nanoen.2014.11.025

    22. [22]

      Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 625. doi: 10.1002/adma.201302877  doi: 10.1002/adma.201302877

    23. [23]

      Zhou, G. M.; Y, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. ACS Nano 2013, 7, 5367. doi: 10.1021/nn401228t  doi: 10.1021/nn401228t

    24. [24]

      Li, Q. Z.; Li, Y. H.; Li, Y. J.; Liu, Y. N. Acta Phys. -Chim. Sin. 2014, 30, 1474.  doi: 10.3866/PKU.WHXB201406041

    25. [25]

      Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Angew. Chem. Int. Ed. 2012, 51, 9592. doi: 10.1002/anie.201205292  doi: 10.1002/anie.201205292

    26. [26]

      He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. ACS Nano 2013, 7, 10920. doi: 10.1021/nn404439r  doi: 10.1021/nn404439r

    27. [27]

      Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. A.; Cui, Y. ACS Nano 2011, 5, 9187. doi: 10.1021/nn203436j  doi: 10.1021/nn203436j

    28. [28]

      Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Nat. Commun. 2017, 8, 8. doi: 10.1038/ncomms14627  doi: 10.1038/ncomms14627

    29. [29]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    30. [30]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotech. 2016, 11, 626. doi: 10.1038/nnano.2016.32  doi: 10.1038/nnano.2016.32

    31. [31]

      Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y. Nat. Commun. 2015, 6, 7436. doi: 10.1038/ncomms8436  doi: 10.1038/ncomms8436

    32. [32]

      Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Materials 2016, 3, 77. doi: 10.1016/j.ensm.2016.01.007  doi: 10.1016/j.ensm.2016.01.007

    33. [33]

      Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602. doi: 10.1103/PhysRevLett.100.016602  doi: 10.1103/PhysRevLett.100.016602

    34. [34]

      Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877  doi: 10.1126/science.1158877

    35. [35]

      Liang, J.; Wen, L.; Cheng, H. M.; Li, F. J. Electrochem. 2015, 21, 505.  doi: 10.13208/j.electrochem.150845

    36. [36]

      Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M. J. Mater. Chem. A 2013, 1, 9382. doi: 10.1039/c3ta11045a  doi: 10.1039/c3ta11045a

    37. [37]

      Cuisinier, M.; Cabelguen, P. E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. J. Phys. Chem. Lett. 2013, 4, 3227. doi: 10.1021/jz401763d  doi: 10.1021/jz401763d

    38. [38]

      Lv, W.; Li, Z.; Deng, Y.; Yang, Q. H.; Kang, F. Energy Storage Materials 2016, 2, 107. doi: 10.1016/j.ensm.2015.10.002  doi: 10.1016/j.ensm.2015.10.002

    39. [39]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    40. [40]

      Pu, N. W.; Wang, C. A.; Sung, Y.; Liu, Y. M.; Ger, M. D. Mater. Lett. 2009, 63, 1987. doi: 10.1016/j.matlet.2009.06.031  doi: 10.1016/j.matlet.2009.06.031

    41. [41]

      Liu, X.; Liu, J.; Zhan, D.; Yan, J.; Wang, J.; Chao, D.; Lai, L.; Chen, M.; Yin, J.; Shen, Z. RSC Adv. 2013, 3, 11601. doi: 10.1039/c3ra22673e  doi: 10.1039/c3ra22673e

    42. [42]

      Chen, I. W. P.; Chen, Y. S.; Kao, N. J.; Wu, C. W.; Zhang, Y. W.; Li, H. T. Carbon 2015, 90, 16. doi: 10.1016/j.carbon.2015.03.067  doi: 10.1016/j.carbon.2015.03.067

    43. [43]

      Parvez, K.; Yang, S.; Feng, X.; Müllen, K. Synthetic Met. 2015, 210, 123. doi: 10.1016/j.synthmet.2015.07.014  doi: 10.1016/j.synthmet.2015.07.014

    44. [44]

      Wei, Y.; Sun, Z. Curr. Opin. Colloid In. 2015, 20, 311. doi: 10.1016/j.cocis.2015.10.010  doi: 10.1016/j.cocis.2015.10.010

    45. [45]

      Singh, R. K.; Kumar, R.; Singh, D. P. RSC Adv. 2016, 6, 64993. doi: 10.1039/c6ra07626b  doi: 10.1039/c6ra07626b

    46. [46]

      Yang, S.; Lohe, M. R.; Mullen, K.; Feng, X. Adv. Mater. 2016, 28, 6213. doi: 10.1002/adma.201505326  doi: 10.1002/adma.201505326

    47. [47]

      Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. J. Power Sources 2011, 196, 7030. doi: 10.1016/j.jpowsour.2010.09.106  doi: 10.1016/j.jpowsour.2010.09.106

    48. [48]

      Cao, Y.; Li, X.; Aksay, I. A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Phys. Chem. Chem. Phys. 2011, 13, 7660. doi: 10.1039/c0cp02477e  doi: 10.1039/c0cp02477e

    49. [49]

      Wei, Z. K.; Chen, J. J.; Qin, L. L.; Nemage, A. W.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2012, 159, A1236. doi: 10.1149/2.048208jes  doi: 10.1149/2.048208jes

    50. [50]

      Evers, S.; Nazar, L. F. Chem. Commun(Camb). 2012, 48, 1233. doi: 10.1039/c2cc16726c  doi: 10.1039/c2cc16726c

    51. [51]

      Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X.; Qiu, Y.; Yang, S. Nano Res. 2012, 5, 726. doi: 10.1007/s12274-012-0257-7  doi: 10.1007/s12274-012-0257-7

    52. [52]

      Jin, J.; Wen, Z.; Ma, G.; Lu, Y.; Cui, Y.; Wu, M.; Liang, X.; Wu, X. Rsc Adv. 2013, 3, 2558. doi: 10.1039/c2ra22808d  doi: 10.1039/c2ra22808d

    53. [53]

      Wang, C.; Wang, X.; Wang, Y.; Chen, J.; Zhou, H.; Huang, Y. Nano Energy 2015, 11, 678. doi: 10.1016/j.nanoen.2014.11.060  doi: 10.1016/j.nanoen.2014.11.060

    54. [54]

      Wang, C.; Wang, X.; Yang, Y.; Kushima, A.; Chen, J.; Huang, Y.; Li, J. Nano Lett. 2015, 15, 1796. doi: 10.1021/acs.nanolett.5600112  doi: 10.1021/acs.nanolett.5600112

    55. [55]

      Xu, C.; Wu, Y.; Zhao, X.; Wang, X.; Du, G.; Zhang, J.; Tu, J. J. Power Sources 2015, 275, 22. doi: 10.1016/j.jpowsour.2014.11.007  doi: 10.1016/j.jpowsour.2014.11.007

    56. [56]

      Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q.; Duan, X. F. Nano Res. 2016, 9, 240. doi: 10.1007/s12274-016-1005-1  doi: 10.1007/s12274-016-1005-1

    57. [57]

      Xi, K.; Kidambi, P. R.; Chen, R.; Gao, C.; Peng, X.; Ducati, C.; Hofmann, S.; Kumar, R. V. Nanoscale 2014, 6, 5746. doi: 10.1039/c4nr00326h  doi: 10.1039/c4nr00326h

    58. [58]

      Lu, S.; Chen, Y.; Wu, X.; Wang, Z.; Li, Y. Sci. Rep. 2014, 4, 4629. doi: 10.1038/srep04629  doi: 10.1038/srep04629

    59. [59]

      Liu, Y.; Guo, J.; Zhang, J.; Su, Q.; Du, G. Appl. Surf. Sci. 2015, 324, 399. doi: 10.1016/j.apsusc.2014.10.176  doi: 10.1016/j.apsusc.2014.10.176

    60. [60]

      Lin, T. Q.; Tang, Y. F.; Wang, Y. M.; Bi, H.; Liu, Z. Q.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Energy Environ. Sci. 2013, 6, 1283. doi: 10.1039/c3ee24324a  doi: 10.1039/c3ee24324a

    61. [61]

      Xu, H.; Deng, Y.; Shi, Z.; Qian, Y.; Meng, Y.; Chen, G. J. Mater. Chem. A 2013, 1, 15142. doi: 10.1039/c3ta13541a  doi: 10.1039/c3ta13541a

    62. [62]

      Peng, H. J.; Liang, J.; Zhu, L.; Huang, J. Q.; Cheng, X. B.; Guo, X.; Ding, W.; Zhu, W.; Zhang, Q. ACS Nano 2014, 8, 11280. doi: 10.1021/nn503985s  doi: 10.1021/nn503985s

    63. [63]

      Li, Z.; Zhang, S.; Zhang, C.; Ueno, K.; Yasuda, T.; Tatara, R.; Dokko, K.; Watanabe, M. Nanoscale 2015, 7, 14385. doi: 10.1039/c5nr03201f  doi: 10.1039/c5nr03201f

    64. [64]

      Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo. Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z.; Chan, H. L. W.; Wang, Y. Adv. Mater. 2015, 27, 5936. doi: 10.1002/adma.201502668  doi: 10.1002/adma.201502668

    65. [65]

      Bao, W. Z.; Zhang, Z. A.; Qu, Y. H.; Zhou, C. K.; Wang, X. W.; Li, J. J. Alloy. Compd. 2014, 582, 334. doi: 10.1016/j.jallcom.2013.08.056  doi: 10.1016/j.jallcom.2013.08.056

    66. [66]

      Wu, H.; Huang, Y.; Zong, M.; Fu, H.; Sun, X. Electrochim. Acta 2015, 163, 24. doi: 10.1016/j.electacta.2015.02.131  doi: 10.1016/j.electacta.2015.02.131

    67. [67]

      Xu, J.; Shui, J.; Wang, J.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. ACS Nano 2014, 8, 10920. doi: 10.1021/nn5047585  doi: 10.1021/nn5047585

    68. [68]

      Li, H.; Yang, X.; Wang, X.; Liu, M.; Ye, F.; Wang, J.; Qiu, Y.; Li, W.; Zhang, Y. Nano Energy 2015, 12, 468. doi: 10.1016/j.nanoen.2015.01.007  doi: 10.1016/j.nanoen.2015.01.007

    69. [69]

      Li, B.; Li, S.; Liu, J.; Wang, B.; Yang, S. Nano Lett. 2015, 15, 3073. doi: 10.1021/acs.nanolett.5b00064  doi: 10.1021/acs.nanolett.5b00064

    70. [70]

      Shi, J. L.; Peng, H. J.; Zhu, L.; Zhu, W.; Zhang, Q. Carbon 2015, 92, 96. doi: 10.1016/j.carbon.2015.03.031  doi: 10.1016/j.carbon.2015.03.031

    71. [71]

      Huang, X.; Sun, B.; Li, K.; Chen, S.; Wang, G. J. Mater. Chem. A 2013, 1, 13484. doi: 10.1039/c3ta12826a  doi: 10.1039/c3ta12826a

    72. [72]

      Zhai, P. Y.; Peng, H. J.; Cheng, X. B.; Zhu, L.; Huang, J. Q.; Zhu, W.; Zhang, Q. Energy Storage Materials 2017, 7, 56. doi: 10.1016/j.ensm.2016.12.004  doi: 10.1016/j.ensm.2016.12.004

    73. [73]

      Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Adv. Funct. Mater. 2016, 26, 577. doi: 10.1002/adfm.201503726  doi: 10.1002/adfm.201503726

    74. [74]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. doi: 10.1021/acsnano.5b01990  doi: 10.1021/acsnano.5b01990

    75. [75]

      Su, Y. S.; Manthiram, A. Chem. Commun. 2012, 48, 8817. doi: 10.1039/c2cc33945e  doi: 10.1039/c2cc33945e

    76. [76]

      Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Adv. Sci. 2016, 3, 1500268. doi: 10.1002/advs.201500268  doi: 10.1002/advs.201500268

    77. [77]

      Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Materials 2015, 1, 127. doi: 10.1016/j.ensm.2015.09.008  doi: 10.1016/j.ensm.2015.09.008

    78. [78]

      Wang, X. F.; Wang, Z. X.; Chen, L. Q. J. Power Sources 2013, 242, 65. doi: 10.1016/j.jpowsour.2013.05.063  doi: 10.1016/j.jpowsour.2013.05.063

    79. [79]

      Wei, L.; Chen, J.; Luo, H. Z.; Li, F. Chin. Sci. Bull. 2015, 60, 630.  doi: 10.1360/N972014-01053

    80. [80]

      Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522. doi: 10.1021/ja206955k  doi: 10.1021/ja206955k

    81. [81]

      Xiao, M.; Huang, M.; Zeng, S.; Han, D.; Wang, S.; Sun, L.; Meng, Y. RSC Adv. 2013, 3, 4914. doi: 10.1039/c3ra00017f  doi: 10.1039/c3ra00017f

    82. [82]

      Rong, J.; Ge, M.; Fang, X.; Zhou, C. Nano Lett. 2014, 14, 473. doi: 10.1021/nl403404v  doi: 10.1021/nl403404v

    83. [83]

      Liu, S.; Xie, K.; Li, Y.; Chen, Z.; Hong, X.; Zhou, L.; Yuan, J.; Zheng, C. Rsc Adv. 2015, 5, 5516. doi: 10.1039/c4ra12393j  doi: 10.1039/c4ra12393j

    84. [84]

      Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002. doi: 10.1021/nn507178a  doi: 10.1021/nn507178a

    85. [85]

      Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nat. Energy 2016, 1, 16094. doi: 10.1038/nenergy.2016.94  doi: 10.1038/nenergy.2016.94

    86. [86]

      Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Small 2016, 12, 381. doi: 10.1002/smll.201503133  doi: 10.1002/smll.201503133

    87. [87]

      Zhou, L.; Lin, X.; Huang, T.; Yu, A. J. Mater. Chem. A 2014, 2, 5117. doi: 10.1039/c3ta15175a  doi: 10.1039/c3ta15175a

    88. [88]

      Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H. B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. Nat. Commun. 2014, 5, 5002. doi: 10.1038/ncomms6002  doi: 10.1038/ncomms6002

    89. [89]

      Zhou, G.; Paek, E.; Hwang, G. S.; Manthiram, A. Adv. Energy Mater. 2016, 6, 1501355. doi: 10.1002/aenm.201501355  doi: 10.1002/aenm.201501355

    90. [90]

      Xie, Y.; Meng, Z.; Cai, T.; Han, W. Q. ACS Appl. Mater. Inter. 2015, 7, 25202. doi: 10.1021/acsami.5b08129  doi: 10.1021/acsami.5b08129

    91. [91]

      Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H.; Yang, S. H.; Duan, W. H.; Ye, Y. F.; Guo, J. H.; Zhang, Y. G. Nano Lett. 2014, 14, 4821. doi: 10.1021/nl5020475  doi: 10.1021/nl5020475

    92. [92]

      Niu, S.; Lv, W.; Zhang, C.; Li, F.; Tang, L.; He, Y.; Li, B.; Yang, Q. H.; Kang, F. J. Mater. Chem. A 2015, 3, 20218. doi: 10.1039/c5ta05324b  doi: 10.1039/c5ta05324b

    93. [93]

      Song, J.; Yu, Z.; Gordin, M. L.; Wang, D. Nano Lett. 2016, 16, 864. doi: 10.1021/acs.nanolett.5b03217  doi: 10.1021/acs.nanolett.5b03217

    94. [94]

      Li, L.; Zhou, G. M.; Yin, L. C.; Koratkar, N.; Li, F.; Cheng, H. M. Carbon 2016, 108, 120. doi: 10.1016/j.carbon.2016.07.008  doi: 10.1016/j.carbon.2016.07.008

    95. [95]

      Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Nano Energy 2016, 25, 203. doi: 10.1016/j.nanoen.2016.04.053  doi: 10.1016/j.nanoen.2016.04.053

    96. [96]

      Ma, Z.; Dou, S.; Shen, A.; Tao, L.; Dai, L.; Wang, S. Angew. Chem. Int. Ed. 2015, 54, 1888. doi: 10.1002/anie.201410258  doi: 10.1002/anie.201410258

    97. [97]

      Yuan, X. Q.; Liu, B. C.; Hou, H. J.; Zeinu, K.; He, Y. H.; Yang, X. R.; Xue, W. J.; He, X.L.; Huang, L.; Zhu, X. L.; Wu, L. S.; Hu, J. P.; Yang, J. K.; Xie, J. Rsc Adv. 2017, 7, 22567. doi: 10.1039/c7ra01946g  doi: 10.1039/c7ra01946g

    98. [98]

      Xing, L. B.; Xi, K.; Li, Q.; Su, Z.; Lai, C.; Zhao, X.; Kumar, R. V. J. Power Sources 2016, 303, 22. doi: 10.1016/j.jpowsour.2015.10.097  doi: 10.1016/j.jpowsour.2015.10.097

    99. [99]

      Li, F.; Su, Y.; Zhao, J. J. Phys. Chem. Chem. Phys. 2016, 18, 25241. doi: 10.1039/c6cp04071c  doi: 10.1039/c6cp04071c

    100. [100]

      Yu, M.; Yuan, W.; Li, C.; Hong, J. D.; Shi, G. J. Mater. Chem. A 2014, 2, 7360. doi: 10.1039/c4ta00234b  doi: 10.1039/c4ta00234b

    101. [101]

      Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M. e.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S. Adv. Mater. 2015, 27, 2891. doi: 10.1002/adma.201405637  doi: 10.1002/adma.201405637

    102. [102]

      Yu, M.; Wang, A.; Tian, F.; Song, H.; Wang, Y.; Li, C.; Hong, J. D.; Shi, G. Nanoscale 2015, 7, 5292. doi: 10.1039/c5nr00166h  doi: 10.1039/c5nr00166h

    103. [103]

      Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. ACS Nano 2012, 6, 10759. doi: 10.1021/nn304037d  doi: 10.1021/nn304037d

    104. [104]

      Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Funct. Mater. 2016, 26, 1112. doi: 10.1002/adfm.201504294  doi: 10.1002/adfm.201504294

    105. [105]

      Niu, S.; Lv, W.; Zhang, C.; Shi, Y.; Zhao, J.; Li, B.; Yang, Q. H.; Kang, F. J. Power Sources 2015, 295, 182. doi: 10.1016/j.jpowsour.2015.06.122  doi: 10.1016/j.jpowsour.2015.06.122

    106. [106]

      Zhu, L.; Peng, H. J.; Liang, J.; Huang, J. Q.; Chen, C. M.; Guo, X.; Zhu, W.; Li, P.; Zhang, Q. Nano Energy 2015, 11, 746. doi: 10.1016/j.nanoen.2014.11.062  doi: 10.1016/j.nanoen.2014.11.062

    107. [107]

      Yuan, S.; Guo, Z.; Wang, L.; Hu, S.; Wang, Y.; Xia, Y. Adv. Sci. 2015, 2, 1500071. doi: 10.1002/advs.201500071  doi: 10.1002/advs.201500071

    108. [108]

      Zhou, X.; Xie, J.; Yang, J.; Zou, Y.; Tang, J.; Wang, S.; Ma, L.; Liao, Q. J. Power Sources 2013, 243, 993. doi: 10.1016/j.jpowsour.2013.05.050  doi: 10.1016/j.jpowsour.2013.05.050

    109. [109]

      Wang, B.; Wen, Y.; Ye, D.; Yu, H.; Sun, B.; Wang, G.; Hulicova-Jurcakova, D.; Wang, L. Chem. Eur. J. 2014, 20, 5224. doi: 10.1002/chem.201400385  doi: 10.1002/chem.201400385

    110. [110]

      Liu, S.; Xie, K.; Chen, Z.; Li, Y.; Hong, X.; Xu, J.; Zhou, L.; Yuan, J.; Zheng, C. J. Mater. Chem. A 2015, 3, 11395. doi: 10.1039/c5ta00897b  doi: 10.1039/c5ta00897b

    111. [111]

      Yang, Y.; Risse, S.; Mei, S. L.; Jafta, C. J.; Lu, Y.; Stöcklein, C.; Kardjilov, N.; Manke, I.; Gong, L.; Kochovski, Z.; Ballauff, M. Energy Storage Materials 2017, 9, 96. doi: 10.1016/j.ensm.2017.06.008  doi: 10.1016/j.ensm.2017.06.008

    112. [112]

      Bao, W.; Zhang, Z.; Chen, W.; Zhou, C.; Lai, Y.; Li, J. Electrochim. Acta 2014, 127, 342. doi: 10.1016/j.electacta.2014.02.043  doi: 10.1016/j.electacta.2014.02.043

    113. [113]

      Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. ACS Nano 2014, 8, 5208. doi: 10.1021/nn501284q  doi: 10.1021/nn501284q

    114. [114]

      Wu, F.; Lee, J. T.; Zhao, E.; Zhang, B.; Yushin, G. ACS Nano 2016, 10, 1333. doi: 10.1021/acsnano.5b06716  doi: 10.1021/acsnano.5b06716

    115. [115]

      Li, Z.; Li, C.; Ge, X.; Ma, J.; Zhang, Z.; Li, Q.; Wang, C.; Yin, L. Nano Energy 2016, 23, 15. doi: 10.1016/j.nanoen.2016.02.049  doi: 10.1016/j.nanoen.2016.02.049

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(42)
  • Abstract views(1636)
  • HTML views(681)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return