Citation: LUO Mingchuan, SUN Yingjun, QIN Yingnan, YANG Yong, WU Dong, GUO Shaojun. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 361-376. doi: 10.3866/PKU.WHXB201708312 shu

Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures


  • Author Bio:




    Shaojun Guo is currently a Professor of Materials Science and Engineering with a joint appointment at Department of Energy & Resources Engineering, at College of Engineering, Peking University. He received his BSc in chemistry from Jilin University (2005), Ph.D. from Chinese Academy of Sciences (2011) with Profs. Erkang Wang and Shaojun Dong, and joined Prof. Shouheng Sun's group as a postdoctoral research associate from Jan. 2011 to Jun. 2013 at Brown University. Then, he works as a very prestigious J. Robert Oppenheimer Distinguished Fellow at Los Alamos National Laboratory. His research interests are in engineering multimetallic nanocrystals and 2D materials for catalysis, renewable energy, optoelectronics and biosensors
  • Corresponding author: GUO Shaojun, guosj@pku.edu.cn
  • Received Date: 30 June 2017
    Revised Date: 16 August 2017
    Accepted Date: 16 August 2017
    Available Online: 31 August 2017

    Fund Project: the National Natural Science Foundation of China 51671003the China Postdoctoral Science Foundation 2017M610022The project was supported by the National Natural Science Foundation of China (51671003), the China Postdoctoral Science Foundation (2017M610022), the National Basic Research Program of China (2016YFB0100201), the Open Project Foundation of State Key Laboratory of Chemical Resource Engineering, the start-up supports from Peking University, and the Young Thousand Talented Program, Chinathe National Basic Research Program of China 2016YFB0100201

  • The past decade has witnessed tremendous progress in the improvement of the electrocatalytic efficiency of the oxygen reduction reaction (ORR), which is important for the widespread adoption of fuel cells. This review provides an overview of the recent advances in the rational structural design and construction of Pt-based nanocatalysts to achieve higher ORR activity, with an emphasis on tuning the dimensionalities of Pt-based nanocrystals. The advantages and disadvantages of each dimensional catalyst have been discussed. In particular, we focus on a contemporary understanding of the structure-performance relationships based on the combined theoretical and experimental evidence, which can be further applied to guide the search for more exciting catalytic systems. The review concludes with a personal perspective for future research directions.
  • 加载中
    1. [1]

      Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083  doi: 10.1126/science.1172083

    2. [2]

      Mayrhofer, K. J.; Arenz, M. Nat. Chem. 2009, 1, 518. doi: 10.1038/nchem.380  doi: 10.1038/nchem.380

    3. [3]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    4. [4]

      Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Chem. Rev. 2016, 116, 3594. doi: 10.1021/acs.chemrev.5b00462  doi: 10.1021/acs.chemrev.5b00462

    5. [5]

      Bezerra, C. W. B.; Zhang, L.; Liu, H.; Lee, K.; Marques, A. L. B.; Marques, E. P.; Wang, H.; Zhang, J. J. Power Sources 2007, 173, 891. doi: 10.1016/j.jpowsour.2007.08.028  doi: 10.1016/j.jpowsour.2007.08.028

    6. [6]

      Stephens, I. E.; Rossmeisl, J.; Chorkendorff, I. Science 2016, 354, 1378. doi: 10.1126/science.aal3303  doi: 10.1126/science.aal3303

    7. [7]

      He, T.; Kreidler, E.; Xiong, L.; Luo, J.; Zhong, C. J. J. Electrochem. Soc. 2006, 153, A1637. doi: 10.1149/1.2213387  doi: 10.1149/1.2213387

    8. [8]

      Yoshida, T.; Kojima, K. Electrochem. Soc. Interface 2015, 24, 45. doi: 10.1149/2.F03152if  doi: 10.1149/2.F03152if

    9. [9]

      Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Energy Environ. Sci. 2012, 5, 6744. doi: 10.1039/C2EE03590A  doi: 10.1039/C2EE03590A

    10. [10]

      Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840  doi: 10.1038/nmat1840

    11. [11]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    12. [12]

      Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121  doi: 10.1038/nchem.121

    13. [13]

      Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Chem. Soc. Rev. 2011, 40, 4167. doi: 10.1039/C0CS00176G  doi: 10.1039/C0CS00176G

    14. [14]

      Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c  doi: 10.1021/cr500519c

    15. [15]

      Guo, S.; Zhang, S.; Sun, S. Angew. Chem. Int. Ed. 2013, 52, 8526. doi: 10.1002/anie.201207186  doi: 10.1002/anie.201207186

    16. [16]

      Yang, H. Angew. Chem. Int. Ed. 2011, 50, 2674. doi: 10.1002/anie.201005868  doi: 10.1002/anie.201005868

    17. [17]

      Zhu, H.; Luo, M. C.; Cai, Y. Z.; Sun, Z. N. Acta Phys. -Chim. Sin. 2016, 32, 2462.  doi: 10.3866/PKU.WHXB201606293

    18. [18]

      Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953  doi: 10.1021/jp0379953

    19. [19]

      Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Ed. 2005, 44, 2132. doi: 10.1002/anie.200462335  doi: 10.1002/anie.200462335

    20. [20]

      Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Top. Catal. 2007, 46, 249. doi: 10.1007/s11244-007-9003-x  doi: 10.1007/s11244-007-9003-x

    21. [21]

      Shao, M.; Sasaki, K.; Marinkovic, N.; Zhang, L.; Adzic, R. Electrochem. Commun. 2007, 9, 2848. doi: 10.1016/j.elecom.2007.10.009  doi: 10.1016/j.elecom.2007.10.009

    22. [22]

      Zhou, W. P.; Yang, X.; Vukmirovic, M. B.; Koel, B. E.; Jiao, J.; Peng, G.; Mavrikakis, M.; Adzic, R. R. J. Am. Chem. Soc. 2009, 131, 12755. doi: 10.1021/ja9039746  doi: 10.1021/ja9039746

    23. [23]

      Gong, K.; Su, D.; Adzic, R. R. J. Am. Chem. Soc. 2010, 132, 14364. doi: 10.1021/ja1063873  doi: 10.1021/ja1063873

    24. [24]

      Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Angew. Chem. Int. Ed. 2010, 49, 8602. doi: 10.1002/anie.201004287  doi: 10.1002/anie.201004287

    25. [25]

      Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783. doi: 10.1021/ja111130t  doi: 10.1021/ja111130t

    26. [26]

      Adzic, R. R. Electrocatalysis-Us 2012, 3, 163. doi: 10.1007/s12678-012-0112-3  doi: 10.1007/s12678-012-0112-3

    27. [27]

      Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Energy Environ. Sci. 2012, 5, 5297. doi: 10.1039/C1EE02067F  doi: 10.1039/C1EE02067F

    28. [28]

      Chen, S.; Ferreira, P. J.; Sheng, W.; Yabuuchi, N.; Allard, L. F.; Shao-Horn, Y. J. Am. Chem. Soc. 2008, 130, 13818. doi: 10.1021/ja802513y  doi: 10.1021/ja802513y

    29. [29]

      Van der Vliet, D. F.; Wang, C.; Li, D.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Angew. Chem. Int. Ed. 2012, 51, 3139. doi: 10.1002/ange.201107668  doi: 10.1002/ange.201107668

    30. [30]

      Chi, M.; Wang, C.; Lei, Y.; Wang, G.; Li, D.; More, K. L.; Lupini, A.; Allard, L. F.; Markovic, N. M.; Stamenkovic, V. R. Nat. Commun. 2015, 6, 8925. doi: 10.1038/ncomms9925  doi: 10.1038/ncomms9925

    31. [31]

      Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2006, 128, 8813. doi: 10.1021/ja0600476  doi: 10.1021/ja0600476

    32. [32]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941  doi: 10.1126/science.1135941

    33. [33]

      Zhu, H.; Luo, M.; Zhang, S.; Wei, L.; Wang, F.; Wang, Z.; Wei, Y.; Han, K. Int. J. Hydrogen Energy 2013, 38, 3323. doi: 10.1016/j.ijhydene.2012.12.127  doi: 10.1016/j.ijhydene.2012.12.127

    34. [34]

      Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Angew. Chem. Int. Ed. 2007, 46, 8988. doi: 10.1002/anie.200703331  doi: 10.1002/anie.200703331

    35. [35]

      Hasché, F.; Oezaslan, M.; Strasser, P. Chemcatchem 2011, 3, 1805. doi: 10.1002/cctc.201100169  doi: 10.1002/cctc.201100169

    36. [36]

      Cui, C.; Ahmadi, M.; Behafarid, F.; Gan, L.; Neumann, M.; Heggen, M.; Cuenya, B. R.; Strasser, P. Faraday Discuss. 2013, 162, 91. doi: 10.1039/C3FD20159G  doi: 10.1039/C3FD20159G

    37. [37]

      Yu, Z.; Zhang, J.; Liu, Z.; Ziegelbauer, J. M.; Xin, H.; Dutta, I.; Muller, D. A.; Wagner, F. T. J. Phys. Chem. C 2012, 116, 19877. doi: 10.1021/jp306107t  doi: 10.1021/jp306107t

    38. [38]

      Snyder, J.; McCue, I.; Livi, K.; Erlebacher, J. J. Am. Chem. Soc. 2012, 134, 8633. doi: 10.1021/ja3019498  doi: 10.1021/ja3019498

    39. [39]

      Strasser, P.; Kühl, S. Nano Energy 2016. 29, 362. doi: 10.1016/j.nanoen.2016.04.047  doi: 10.1016/j.nanoen.2016.04.047

    40. [40]

      Gan, L.; Heggen, M.; O'Malley, R.; Theobald, B.; Strasser, P. Nano Lett. 2013, 13, 1131. doi: 10.1021/nl304488q  doi: 10.1021/nl304488q

    41. [41]

      Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A. Nat. Chem. 2010, 2, 454. doi: 10.1038/nchem.623  doi: 10.1038/nchem.623

    42. [42]

      Wang, D.; Zhao, P.; Li, Y. Sci. Rep-Uk 2011, 1, 37. doi: 10.1038/srep00037  doi: 10.1038/srep00037

    43. [43]

      Ulrikkeholm, E. T.; Pedersen, A. F.; Vej-Hansen, U. G.; Escudero-Escribano, M.; Stephens, I. E. L.; Friebel, D.; Mehta, A.; Schiøtz, J.; Feidenhansl', R. K.; Nilsson, A.; Chorkendorff, I. Surf. Sci. 2016, 652, 114. doi: 10.1016/j.susc.2016.02.009  doi: 10.1016/j.susc.2016.02.009

    44. [44]

      Pedersen, A. F.; Ulrikkeholm, E. T.; Escudero-Escribano, M.; Johansson, T. P.; Malacrida, P.; Pedersen, C. M.; Hansen, M. H.; Jensen, K. D.; Rossmeisl, J.; Friebel, D.; Nilsson, A.; Chorkendorff, I. Stephens, I. E. L. Nano Energy 2016, 29, 249. doi: 10.1016/j.nanoen.2016.05.026  doi: 10.1016/j.nanoen.2016.05.026

    45. [45]

      Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velazquez-Palenzuela, A.; Tripkovic, V.; Schiotz, J.; Rossmeisl, J.; Stephens, I. E.; Chorkendorff, I. Science 2016, 352, 73. doi: 10.1126/science.aad8892  doi: 10.1126/science.aad8892

    46. [46]

      Velázquez-Palenzuela, A.; Masini, F.; Pedersen, A. F.; Escudero-Escribano, M.; Deiana, D.; Malacrida, P.; Hansen, T. W.; Friebel, D.; Nilsson, A.; Stephens, I. E. L.; Chorkendorff, I. J. Catal. 2015, 328, 297. doi: 10.1016/j.jcat.2014.12.012  doi: 10.1016/j.jcat.2014.12.012

    47. [47]

      Malacrida, P.; Casalongue, H. G.; Masini, F.; Kaya, S.; Hernandez-Fernandez, P.; Deiana, D.; Ogasawara, H.; Stephens, I. E.; Nilsson, A.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2015, 17, 28121. doi: 10.1039/C5CP00283D  doi: 10.1039/C5CP00283D

    48. [48]

      Malacrida, P.; Escudero-Escribano, M.; Verdaguer-Casadevall, A.; Stephens, I. E. L.; Chorkendorff, I. J. Mater. Chem. A 2014, 2, 4234. doi: 10.1039/C3TA14574C  doi: 10.1039/C3TA14574C

    49. [49]

      Hernandez-Fernandez, P.; Masini, F.; McCarthy, D. N.; Strebel, C. E.; Friebel, D.; Deiana, D.; Malacrida, P.; Nierhoff, A.; Bodin, A.; Wise, A. M.; Nielsen, J. H.; Hansen, T. W.; Nilsson, A. Stephens, I. E. L.; Chorkendorff, I. Nat. Chem. 2014, 6, 732. doi: 10.1038/nchem.2001  doi: 10.1038/nchem.2001

    50. [50]

      Stephens, I. E. L.; Bondarenko, A. S.; Bech, L.; Chorkendorff, I. ChemCatChem 2012, 4, 341. doi: 10.1002/cctc.201100343  doi: 10.1002/cctc.201100343

    51. [51]

      Escudero-Escribano, M.; Verdaguer-Casadevall, A.; Malacrida, P.; Gronbjerg, U.; Knudsen, B. P.; Jepsen, A. K.; Rossmeisl, J.; Stephens, I. E.; Chorkendorff, I. J. Am. Chem. Soc. 2012, 134, 16476. doi: 10.1021/ja306348d.  doi: 10.1021/ja306348d

    52. [52]

      Strasser, P. Science 2015, 349, 379. doi: 10.1126/science.aac7861  doi: 10.1126/science.aac7861

    53. [53]

      Kongkanand, A.; Mathias, M. F. J. Phys. Chem. Lett. 2016, 7, 1127. doi: 10.1021/acs.jpclett.6b00216  doi: 10.1021/acs.jpclett.6b00216

    54. [54]

      Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60. doi: 10.1002/anie.200802248  doi: 10.1002/anie.200802248

    55. [55]

      Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. Chem. Rev 2016, 116, 10414. doi: 10.1021/acs.chemrev.6b00211  doi: 10.1021/acs.chemrev.6b00211

    56. [56]

      Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845. doi: 10.1021/cr040090g  doi: 10.1021/cr040090g

    57. [57]

      Wu, J.; Yang, H. Acc. Chem. Res. 2013, 46, 1848. doi: 10.1021/ar300359w  doi: 10.1021/ar300359w

    58. [58]

      Perez-Alonso, F. J.; McCarthy, D. N.; Nierhoff, A.; Hernandez-Fernandez, P.; Strebel, C.; Stephens, I. E.; Nielsen, J. H.; Chorkendorff, I. Angew. Chem. Int. Ed. 2012, 51, 4641. doi: 10.1002/anie.201200586  doi: 10.1002/anie.201200586

    59. [59]

      Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. Angew. Chem. Int. Ed. 2008, 47, 3588. doi: 10.1002/anie.200800073  doi: 10.1002/anie.200800073

    60. [60]

      Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M.; Duan, X. F.; Mueller, T.; Huang, Y. Science 2015, 348, 1230. doi: 10.1126/science.aaa8765  doi: 10.1126/science.aaa8765

    61. [61]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    62. [62]

      Zhang, J.; Yang, H.; Fang, J.; Zou, S. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z  doi: 10.1021/nl903717z

    63. [63]

      Wu, J.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p  doi: 10.1021/nl104094p

    64. [64]

      Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/nchem.367  doi: 10.1038/nchem.367

    65. [65]

      Yang, S.; Liu, F.; Wu, C.; Yang, S. Small 2016, 12, 4028. doi: 10.1002/smll.201601203  doi: 10.1002/smll.201601203

    66. [66]

      Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M.; Guo, S. Adv. Mater. 2016, 28, 10117. doi: 10.1002/adma.201601909  doi: 10.1002/adma.201601909

    67. [67]

      Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685. doi: 10.1002/smll.201002022  doi: 10.1002/smll.201002022

    68. [68]

      Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X. Adv. Mater. 2015, 27, 7204. doi: 10.1002/adma.201502725  doi: 10.1002/adma.201502725

    69. [69]

      Bu, L.; Guo, S.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J.; Guo, J.; Huang, X. Nat. Commun. 2016, 7, 11850. doi: 10.1038/ncomms11850  doi: 10.1038/ncomms11850

    70. [70]

      Guo, S.; Li, D.; Zhu, H.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. Angew. Chem. Int. Ed. 2013, 52, 3465. doi: 10.1002/anie.201209871  doi: 10.1002/anie.201209871

    71. [71]

      Guo, S.; Zhang, S.; Su, D.; Sun, S. J. Am. Chem. Soc. 2013, 135, 13879. doi: 10.1021/ja406091p  doi: 10.1021/ja406091p

    72. [72]

      Jiang, K.; Zhao, D.; Guo, S.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Sci. Adv. 2017, 3, e1601705. doi: 10.1126/sciadv.1601705  doi: 10.1126/sciadv.1601705

    73. [73]

      Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y.; Zhu, E. B.; Ted Yu, T.; Jia, Q. Y.; Guo, J. H.; Zhang, L.; Goddard III, W. A.; Huang, Y.; Duan, X. F. Science 2016, 354, 1414. doi: 10.1126/science.aaf9050  doi: 10.1126/science.aaf9050

    74. [74]

      Fortunelli, A.; Goddard Iii, W. A.; Sementa, L.; Barcaro, G.; Negreiros, F. R.; Jaramillo-Botero, A. Chem. Sci. 2015, 6, 3915 doi: 10.1039/C5SC00840A  doi: 10.1039/C5SC00840A

    75. [75]

      Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. Int. Ed. 2007, 119, 4138. doi: 10.1002/anie.200700894  doi: 10.1002/anie.200700894

    76. [76]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    77. [77]

      Zhang, H. ACS Nano 2015, 9, 9451. doi: 10.1021/acsnano.5b05040.  doi: 10.1021/acsnano.5b05040

    78. [78]

      Cheong, W. C.; Liu, C.; Jiang, M.; Duan, H.; Wang, D.; Chen, C.; Li, Y. Nano Res. 2016, 9, 2244. doi: 10.1007/s12274-016-1111-0  doi: 10.1007/s12274-016-1111-0

    79. [79]

      Funatsu, A.; Tateishi, H.; Hatakeyama, K.; Fukunaga, Y.; Taniguchi, T.; Koinuma, M.; Matsuura, H.; Matsumoto, Y. Chem. Commun. 2014, 50, 8503. doi: 10.1039/C4CC02527J  doi: 10.1039/C4CC02527J

    80. [80]

      Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D.; Huang, X. Q. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    81. [81]

      Xia, Y.; Yang, X. Acc. Chem. Res. 2017, 50, 450. doi: 10.1021/acs.accounts.6b00469  doi: 10.1021/acs.accounts.6b00469

    82. [82]

      Nesselberger, M.; Ashton, S.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J.; Arenz, M. J. Am. Chem. Soc. 2011, 133, 17428. doi: 10.1021/ja207016u  doi: 10.1021/ja207016u

    83. [83]

      Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi M. F.; Liu, J. Y.; Choi, S.; Park, J. B.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412. doi: 10.1126/science.aab0801  doi: 10.1126/science.aab0801

    84. [84]

      Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Nat. Protoc. 2007, 2, 2182. doi: 10.1038/nprot.2007.326  doi: 10.1038/nprot.2007.326

    85. [85]

      Xia, X.; Xie, S.; Liu, M.; Peng, H. C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 6669. doi: 10.1073/pnas.1222109110  doi: 10.1073/pnas.1222109110

    86. [86]

      Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J.; Xie, Z.; Xia, Y. Nano Lett. 2016, 16, 1467. doi: 10.1021/acs.nanolett.5b05140  doi: 10.1021/acs.nanolett.5b05140

    87. [87]

      Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M. F.; More, K. L.; Li, Y. D.; Markovic, N. M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061  doi: 10.1126/science.1249061

    88. [88]

      Ding, J.; Bu, L.; Guo, S.; Zhao, Z.; Zhu, E.; Huang, Y.; Huang, X. Nano Lett. 2016, 16, 2762. doi: 10.1021/acs.nanolett.6b00471  doi: 10.1021/acs.nanolett.6b00471

    89. [89]

      Zhu, C.; Du, D.; Eychmuller, A.; Lin, Y. Chem. Rev. 2015, 115, 8896. doi: 10.1021/acs.chemrev.5b00255  doi: 10.1021/acs.chemrev.5b00255

    90. [90]

      Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature 2001, 410, 450. doi: 10.1038/35068529  doi: 10.1038/35068529

    91. [91]

      Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273. doi: 10.1021/jz4014135  doi: 10.1021/jz4014135

    92. [92]

      Oezaslan, M.; Heggen, M.; Strasser, P. J. Am. Chem. Soc. 2012, 134, 514. doi: 10.1021/ja2088162  doi: 10.1021/ja2088162

    93. [93]

      Han, B.; Carlton, C. E.; Kongkanand, A.; Kukreja, R. S.; Theobald, B. R.; Gan, L.; O'Malley, R.; Strasser, P.; Wagner, F. T.; Shao-Horn, Y. Energy Environ. Sci. 2015, 8, 258. doi: 10.1039/C4EE02144D  doi: 10.1039/C4EE02144D

    94. [94]

      Snyder, J.; Livi, K.; Erlebacher, J. Adv. Funct. Mater. 2013, 23, 5494. doi: 10.1038/nmat2878  doi: 10.1038/nmat2878

    95. [95]

      Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J. Nat. Mater. 2010, 9, 904. doi: 10.1038/nmat2878  doi: 10.1038/nmat2878

    96. [96]

      Alia, S. M.; Zhang, G.; Kisailus, D.; Li, D.; Gu, S.; Jensen, K.; Yan, Y. Adv. Funct. Mater. 2010, 20, 3742. doi: 10.1002/adfm.201001035  doi: 10.1002/adfm.201001035

    97. [97]

      Todoroki, N.; Kato, T.; Hayashi, T.; Takahashi, S.; Wadayama, T. ACS Catal. 2015, 5, doi: 2209-2212.10.1021/acscatal.5b00065  doi: 10.1021/acscatal.5b00065

    98. [98]

      Lim, B.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 76. doi: 10.1002/anie.201002024  doi: 10.1002/anie.201002024

    99. [99]

      Lim, B.; Jiang, M.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324, 1302. doi: 10.1126/science.1170377  doi: 10.1126/science.1170377

    100. [100]

      Huang, X.; Zhu, E.; Chen, Y.; Li, Y.; Chiu, C. Y.; Xu, Y.; Lin, Z.; Duan, X.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.201205315  doi: 10.1002/adma.201205315

    101. [101]

      Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X. Angew. Chem. Int. Ed. 2011, 50, 422. doi: 10.1002/ange.201004631  doi: 10.1002/ange.201004631

  • 加载中
    1. [1]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    4. [4]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    5. [5]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    6. [6]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    7. [7]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    10. [10]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    15. [15]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    16. [16]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    17. [17]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    18. [18]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    19. [19]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(13)
  • Abstract views(339)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return