Citation: LIANG Sisi, SHANG Mengmeng, LIN Jun. Single-Component Luminescent Materials Activated with Mixed-Valence Eu(+2, +3): Designed Synthesis, Luminescent Properties and Mechanisms[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 237-246. doi: 10.3866/PKU.WHXB201708281 shu

Single-Component Luminescent Materials Activated with Mixed-Valence Eu(+2, +3): Designed Synthesis, Luminescent Properties and Mechanisms

  • Corresponding author: SHANG Mengmeng, mmshang@ciac.ac.cn LIN Jun, jlin@ciac.ac.cn
  • Received Date: 26 June 2017
    Revised Date: 21 July 2017
    Accepted Date: 1 August 2017
    Available Online: 28 March 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (51672265, 91433110)the National Natural Science Foundation of China 91433110the National Natural Science Foundation of China 51672265

  • White LEDs are considered the next-generation light source as they are environmentally friendly and have high efficiencies. Therefore, researches are being conducted to meet the performance requirements of phosphors, which are the crucial components of white LEDs. Eu2+ and Eu3+ ions have different electronic structures, which lead to distinct photoluminescence properties. The characteristic emissions of Eu2+ and Eu3+ originate from the 4f-4f and 4f-5d transitions, respectively. In order to combine their respective features, the research of mixed-valence Eu ions into single-phase phosphors has become a hot research topic in recent years. The mixed-valence Eu ion-doped phosphors have tunable luminescence properties because they possess the respective properties of Eu2+ and Eu3+. From their respective characters of Eu2+ and Eu3+, this paper mainly reviews the progress of mixed valence Eu(+2, +3) ion-activated single-component luminescent materials in recent years from three aspects: unbalanced substitution, crystal field regulation, and other systems. In addition, the respective photoluminescence properties of Eu2+ and Eu3+ and the luminescence performances and mechanisms of the mixed-valence Eu ion-activated phosphors have been summarized. The luminescence performances and mechanisms have been summarized as well. All the research works carried out in this field provide inspiration for the investigation of new phosphors.
  • 加载中
    1. [1]

      George, N. C.; Denault, K. A.; Seshadri, R. Annu. Rev. Mater. Res. 2013, 43, 481. doi: 10.1088/0953-8984/15/22/316.  doi: 10.1088/0953-8984/15/22/316

    2. [2]

      Lin, C. C.; Liu, R. S. J. Phys. Chem. Lett. 2011, 2, 1268. doi: 10.1021/jz2002452  doi: 10.1021/jz2002452

    3. [3]

      Sheu, J. K.; Chang, S. J.; Su, C. H. K. K.; Wu, L. W.; Lin, Y. C.; Lai, W. C.; Tsai, J. M.; Chi, G. C.; Wu, R. K. IEEE Photonics Technology Letters 2003, 15, 18. doi: 10.1109/LPT.2002.805852.  doi: 10.1109/LPT.2002.805852

    4. [4]

      Lin, C. C.; Tang, Y. S.; Hu, S. F. J. Lumin. 2009, 129, 1682. doi: 10.1016/j.jlumin.2009.03.022.  doi: 10.1016/j.jlumin.2009.03.022

    5. [5]

      Yang, W. J.; Luo, L.; Chen, T. M.; Wang, N. S. Chem. Mater. 2005, 17, 3883. doi: 10.1021/cm050638f  doi: 10.1021/cm050638f

    6. [6]

      Caldinño, U. G. J. Phys.: Condens. Matter 2003, 15, 3821.  doi: 10.1088/0953-8984/15/22/316

    7. [7]

      Mi, X. Y.; Sun, J. C.; Zhou, P.; Zhou, H.; Song, D.; Li, K.; Shang, M. M.; Lin, J. J. Mater. Chem. C 2015, 3, 4471. doi: 10.1039/C4TC02433H  doi: 10.1039/C4TC02433H

    8. [8]

      Li, K.; Fan, J.; Shang, M. M.; Lian, H. Z.; Lin, J. J. Mater. Chem. C 2015, 3, 9989. doi: 10.1039/C5TC01993A  doi: 10.1039/C5TC01993A

    9. [9]

      Li, K.; Lian, H. Z.; Shang, M. M.; Lin, J. Dalton Trans. 2015, 44, 20542. doi: 10.1039/C5DT03565A  doi: 10.1039/C5DT03565A

    10. [10]

      McKittrick, J.; Shea-Rohwer, L. E. J. Am. Ceram. Soc. 2014, 97, 1327. doi: 10.1111/jace.12943  doi: 10.1111/jace.12943

    11. [11]

      Lee, G. Y.; Han, J. Y.; Im, W. B.; Cheong, S. H.; Jeon, D. Y. Inorg. Chem. 2012, 51, 10688. doi: 10.1021/ic300956m  doi: 10.1021/ic300956m

    12. [12]

      Shang, M. M.; Li, C. X.; Lin, J. Chem. Soc. Rev. 2014, 43, 1372. doi: 10.1039/C3CS60314H  doi: 10.1039/C3CS60314H

    13. [13]

      Dorenbos, P. J. Lumin. 2003, 104, 239. doi: 10.1039/C3CS60314H  doi: 10.1039/C3CS60314H

    14. [14]

      Xie, R. J.; Hirosaki, N.; Sakuma, K.; Yamamoto, Y. Appl. Phys. Lett. 2004, 84, 5404. doi: 10.1063/1.1767596  doi: 10.1063/1.1767596

    15. [15]

    16. [16]

      Poesl, C.; Schnick, W. Chem. Mater. 2017, 29, 3778. doi: 10.1021/acs.chemmater.7b00871  doi: 10.1021/acs.chemmater.7b00871

    17. [17]

      Dorenbos, P. Chem.Mater. 2005, 17, 6452. doi: 10.1021/cm051456o  doi: 10.1021/cm051456o

    18. [18]

      Zhang, J.C.; Long, Y. Z.; Zhang, H. D.; Sun, B.; Han, W. P.; Sun, X. Y. J. Mater. Chem. C 2014, 2, 312. doi: 10.1039/C3TC31798F  doi: 10.1039/C3TC31798F

    19. [19]

      Gao, G.; Reibstein, S.; Peng, M.; Wondraczek, L. J. Mater. Chem. 2011, 21, 3156. doi: 10.1039/C0JM03273E  doi: 10.1039/C0JM03273E

    20. [20]

      Hou, J.; Jiang, W.; Fang, Y.; Huang, F. J. Mater. Chem. C 2013, 1, 5892. doi: 10.1039/C3TC30933A  doi: 10.1039/C3TC30933A

    21. [21]

      Xie, M.; Zhu, G.; Li, D.; Pan, R.; Fu, X. RSC Adv. 2016, 6, 33990. doi: 10.1039/C6RA03154D  doi: 10.1039/C6RA03154D

    22. [22]

      Hou, J.; Jiang, W.; Fang, Y.; Huang, F. J. Mater. Chem. C 2013, 1, 5892. doi: 10.1039/c3tc30933a  doi: 10.1039/c3tc30933a

    23. [23]

      Li, W.; Wang, J.; Zhang, H.; Liu, Y.; Lei, B.; Zhuang, J.; Cui, J.; Peng, M.; Zhu, Y. RSC Adv. 2016, 6, 33076. doi: 10.1039/C6RA04387A  doi: 10.1039/C6RA04387A

    24. [24]

      Dai, P. P.; Li, C.; Zhang, X. T.; Xu, J.; Chen, X.; Wang, X. L.; Jia, Y.; Wang, X.; Liu, Y. C. Light: Sci. Appl. 2016, 5, e16024.  doi: 10.1038/lsa.2016.24

    25. [25]

      Xia, Z.; Ma, C.; Molokeev, M. S.; Liu, Q.; Rickert, K.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2015, 137, 12494. doi: 10.1021/jacs.5b08315  doi: 10.1021/jacs.5b08315

    26. [26]

      Han, J. Y.; Im, W. B.; Kim, D.; Cheong, S. H.; Lee, G. Y.; Jeon, D. Y. J. Mater. Chem. 2012, 22, 5374. doi: 10.1039/C2JM15501J  doi: 10.1039/C2JM15501J

    27. [27]

      Wang, J.; Lin, H.; Huang, Q.; Xiao, G.; Xu, J.; Wang, B.; Hu, T.; Wang, Y. J. Mater. Chem. C 2017, 5, 1789. doi: 10.1039/C6TC04350J  doi: 10.1039/C6TC04350J

    28. [28]

      He, H.; Fu, R.; Song, X.; Wang, D.; Chen, J. J. Lumin. 2008, 128, 489. doi:10.1016/j.jlumin.2007.09.023  doi: 10.1016/j.jlumin.2007.09.023

    29. [29]

      Kim, T. G.; Kim, T.; Kim, J.; Kim, S. J.; Im, S. J. J. Phys. Chem. C 2014, 118, 12428. doi: 10.1021/jp5002379  doi: 10.1021/jp5002379

    30. [30]

      Kalaji, A.; Mikami, M.; Cheetham, A. K. Chem. Mater. 2014, 26, 3966. doi: 10.1021/cm501516m  doi: 10.1021/cm501516m

    31. [31]

      Wang, Z.; Xia, Z.; Molokeev, M. S.; Atuchin, V. V.; Liu, Q. Dalton Trans. 2014, 43, 16800. doi: 10.1039/C4DT02319F  doi: 10.1039/C4DT02319F

    32. [32]

      Zhang, Y.; Li, X.; Li, K.; Lian, H.; Shang, M.; Lin, J. ACS Appl. Mater. Interfaces 2015, 7, 2715. doi: 10.1021/am508859c  doi: 10.1021/am508859c

    33. [33]

      Wei, Y.; Jia, H.; Xiao, H.; Shang, M. M.; Lin, C. C.; Su, C.; Chan, T. S.; Li, G. G.; Lin, J. RSC Adv. 2017, 7, 1899. doi: 10.1039/C6RA26869B.  doi: 10.1039/C6RA26869B

    34. [34]

      Mao, Z. Y.; Wang, D. J.; Lu, Q. F.; Yu, W. H.; Yuan, Z. H. Chem. Comm. 2009, 346. doi: 10.1039/B814535K  doi: 10.1039/B814535K

    35. [35]

      Mao, Z. Y.; Wang, D. J. Inorg. Chem. 2010, 49, 4922. doi: 10.1021/ic902538a.  doi: 10.1021/ic902538a

    36. [36]

      Pawar, A.; Jadhav, A. P.; Pal, U.; Kim, B. K.; Kang, Y. S. J. Lumin. 2012, 132, 659. doi:10.1016/j.jlumin.2011.09.058  doi: 10.1016/j.jlumin.2011.09.058

    37. [37]

      Saradhi, M.; Pralong, V.; Varadaraju, U.; Raveau, B. Chem. Mater. 2009, 21, 1793. doi: 10.1021/cm900309p  doi: 10.1021/cm900309p

    38. [38]

      Liu, W.; Liu, L.; Wang, Y.; Chen, L.; McLeod, J. A.; Yang, L.; Zhao, J.; Liu, Z.; Diwu, J.; Chai, Z. Chem. -Eur. J. 2016, 22, 11170. doi: 10.1002/chem.201602621  doi: 10.1002/chem.201602621

  • 加载中
    1. [1]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    2. [2]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    3. [3]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    7. [7]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    15. [15]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(8)
  • Abstract views(678)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return