Citation: FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 296-302. doi: 10.3866/PKU.WHXB201708241 shu

Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study

  • Corresponding author: CAO Xinrui, xinruicao@xmu.edu.cn CAO Zexing, zxcao@xmu.edu.cn
  • Received Date: 26 July 2017
    Revised Date: 17 August 2017
    Accepted Date: 21 August 2017
    Available Online: 24 March 2017

    Fund Project: the National Natural Science Foundation of China 21373164the National Natural Science Foundation of China 21673185the Fundamental Research Funds for the Central Universities of China 20720150215The project was supported by the Fundamental Research Funds for the Central Universities of China (20720150215) and the National Natural Science Foundation of China (21373164, 21673185)

  • In this work, a monocrystalline silicon-like material, C40H16Si2, was designed by structural modification based on the tetrahedral bonding features of silicon. The electronic, mechanical, and optical properties of this material were explored by first-principles calculations. The obtained results revealed that this material shows high thermodynamic stability and mechanical stability. The bandgap for Si(C≡C–C6H4–C≡C)4 was calculated to be 3.32 eV, and its valence and conduction bands were located at the Gamma point, indicating that this material is a direct wide-bandgap semiconductor. The Vickers hardness and density of this material were very small, less than one-tenth of that of single-crystalline silicon. The novel compound is a flexible and porous material with low density, and its strong absorption in the UV region makes it a promising semiconductor for blue and green light-emitting diodes.
  • 加载中
    1. [1]

      Tiedje, T.; Yablonovitch, E.; Cody, G. D.; Brooks, B. G. IEEE Trans. Electron Devices 1984, 31 (5), 711. doi: 10.1109/T-ED.1984.21594  doi: 10.1109/T-ED.1984.21594

    2. [2]

      Shin, J. H.; Lee, W.-H.; Han, H.-S. Appl. Phys. Lett. 1999, 74 (11), 1573. doi: 10.1063/1.123620  doi: 10.1063/1.123620

    3. [3]

      Kopaev, Y. V. JETP Lett. 1992, 55 (12), 728.

    4. [4]

      Tsybeskov, L.; Grom, G. F.; Fauchet, P. M.; McCaffrey, J. P.; Baribeau, J. M.; Sproule, G. I.; Lockwood, D. J. Appl. Phys. Lett. 1999, 75 (15), 2265. doi: 10.1063/1.124985  doi: 10.1063/1.124985

    5. [5]

      Canham, L. T. Appl. Phys. Lett. 1990, 57 (10), 1046. doi: 10.1063/1.103561  doi: 10.1063/1.103561

    6. [6]

      Xiong, Z. H.; Liao, L. S.; Yuan, S.; Yang, Z. R.; Ding, X. M.; Hou, X. Y. Thin Solid Films 2001, 388, 271. doi: 10.1016/s0040-6090(00)01887-3  doi: 10.1016/s0040-6090(00)01887-3

    7. [7]

      Li, X. J.; Zhu, D. L.; Chen, Q. W.; Zhang, Y. H. Appl. Phys. Lett. 1999, 74 (3), 389. doi: 10.1063/1.123080  doi: 10.1063/1.123080

    8. [8]

      Geyer, F. L.; Rominger, F.; Bunz, U. H. Chemistry 2014, 20 (13), 3600. doi: 10.1002/chem.201400105  doi: 10.1002/chem.201400105

    9. [9]

      Sun, M. J.; Cao, X.; Cao, Z. ACS Appl Mater. Inter. 2016, 8 (26), 16551. doi: 10.1021/acsami.6b05502  doi: 10.1021/acsami.6b05502

    10. [10]

      Shao, G.; Orita, A.; Nishijima, K.; Ishimaru, K.; Takezaki, M.; Wakamatsu, K.; Gleiter, R.; Otera, J. Chem-Asian J. 2007, 2 (4), 489. doi: 10.1002/asia.200700007  doi: 10.1002/asia.200700007

    11. [11]

      Anthony P. Scott, L. R. J. Phys. Chem. 1996, 100, 16502. doi: 10.1021/jp960976r  doi: 10.1021/jp960976r

    12. [12]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6 (1), 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    13. [13]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.78.1396  doi: 10.1103/PhysRevLett.78.1396

    14. [14]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118 (18), 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    15. [15]

      Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64(4), 1045. doi: 10.1103/RevModPhys.64.1045  doi: 10.1103/RevModPhys.64.1045

    16. [16]

      Delley, B. J. Phys.: Condens. Matter. 2010, 22 (38), 384208. doi: 10.1088/0953-8984/22/38/384208  doi: 10.1088/0953-8984/22/38/384208

    17. [17]

      Shi, Y. J.; Du, Y. L.; Chen, G.; Chen, G. L. Phys. Lett. A. 2007, 368 (6), 495. doi: 10.1016/j.physleta.2007.04.047  doi: 10.1016/j.physleta.2007.04.047

    18. [18]

      Shein, I. R.; Shein, K. I.; Ivanovskii, A. L. Physica B. 2007, 387, 184. doi: 10.1016/j.physb.2006.04.011  doi: 10.1016/j.physb.2006.04.011

    19. [19]

      Gao, X.; Jiang, Y.; Zhou, R.; Feng, J. J. Alloy. Compd. 2014, 587, 819. doi: 10.1016/j.jallcom.2013.11.005  doi: 10.1016/j.jallcom.2013.11.005

    20. [20]

      Lv, Z. Q.; Zhang, F. C.; Sun, S. H.; Wang, Z. H.; Jiang, P.; Zhang, W. H.; Fu, W. T. Comput. Mater. Sci. 2008, 44 (2), 690. doi: 10.1016/j.commatsci.2008.05.006  doi: 10.1016/j.commatsci.2008.05.006

    21. [21]

      Hill, R. Proc. Phys. Soc. 1952, 65, 349. doi: 10.1088/0370-1298/65/5/307  doi: 10.1088/0370-1298/65/5/307

    22. [22]

      Li, Y.; Gao, Y.; Xiao, B.; Min, T.; Fan, Z.; Ma, S.; Xu, L. J. Alloy. Compd. 2010, 502 (1), 28. doi: 10.1016/j.jallcom.2010.04.184  doi: 10.1016/j.jallcom.2010.04.184

    23. [23]

      Yu, W. Y.; Wang, N.; Xiao, X. B.; Tang, B. Y.; Peng, L. M.; Ding, W. J. Solid State Sci. 2009, 11 (8), 1400. doi: 10.1016/j.solidstatesciences.2009.04.017  doi: 10.1016/j.solidstatesciences.2009.04.017

    24. [24]

      Chen, X. Q.; Niu, H. Y.; Li, D. Z.; Li, Y. Y. Intermetallics 2011, 19(9), 1275. doi: 10.1016/j.intermet.2011.03.026  doi: 10.1016/j.intermet.2011.03.026

    25. [25]

      Zhao, E.; Wang, J.; Meng, J.; Wu, Z. J. Solid State Chem. 2009, 182 (4), 960. doi: 10.1016/j.jssc.2009.01.034  doi: 10.1016/j.jssc.2009.01.034

    26. [26]

      Yuan, J. H.; Gao, B.; Wang, W.; Wang, J. B. Acta Phys. -Chim. Sin. 2015, 31 (7), 1302.  doi: 10.3866/pku.whxb201505081

    27. [27]

      Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62, 8828. doi: 10.1103/PhysRevB.62.8828  doi: 10.1103/PhysRevB.62.8828

    28. [28]

      Cheng, L.; Zhang, Z. Y.; Shao, J. H. Acta Phys. -Chim. Sin. 2011, 27 (4), 846.  doi: 10.3866/PKU.WHXB20110324

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    3. [3]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    13. [13]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

Metrics
  • PDF Downloads(6)
  • Abstract views(416)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return