Citation: WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 286-295. doi: 10.3866/PKU.WHXB201708172 shu

Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity

  • Corresponding author: WU Xuanjun, wuxuanjun@whut.edu.cn CAI Weiquan, caiwq@whut.edu.cn
  • Received Date: 4 July 2017
    Revised Date: 4 August 2017
    Accepted Date: 8 August 2017
    Available Online: 17 March 2017

    Fund Project: the National Natural Science Foundation of China 51272201the China Scholarship Council for the Scholarship Support [2016]3099the Fundamental Research Funds for the Central Universities 175220002the National Natural Science Foundation of China 21476179The project was supported by the National Natural Science Foundation of China (51272201, 21476179), the China Scholarship Council for the Scholarship Support ([2016]3099), the Fundamental Research Funds for the Central Universities (175220002), and 2016 Wuhan Yellow Crane Talents (Science) Program

  • The effect of inserting coordinatively unsaturated metal sites (CUS) into porous aromatic frameworks (PAFs) on their hydrogen storage capacity was investigated systematically by density functional theory and grand canonical Monte Carlo simulations. The results indicate that the maximum excess gravimetric uptake of hydrogen possible with PAF-302MgO2_PBE100 is 7.97% (w) at 77 K. The total uptakes of hydrogen by PAF-302 and PAF-303 functionalized with 100% magnesium alkoxide at 77 K and 10 MPa were determined to be 9.9% (w) (65.9 g∙L-1) and 15.0% (w) (50.5 g∙L-1), respectively. These uptake values are 80% (64.8%) and 173% (26.3%), respectively, more than the gravimetric and volumetric targets set by the Department of Energy (DOE) of USA. They also exceed the targets set by NU-1101, presenting the highest measured performance of 9.9% (w) (46.6 g∙L-1) under the same conditions. Even at 243 K and 10 MPa, the total gravimetric and volumetric uptakes of hydrogen in the former are up to 5.13% (w) and 34.19 g∙L-1, which are about 93.3% and 85.5% of the targets set by DOE, respectively. By analyzing the isosteric heat of adsorption (Qst), radial distribution function, and mass center probability density, it is found that increasing the length of the organic linkers of PAFs incorporated with CUS will result in decreasing volumetric surface areas in spite of the increase in void fractions, which is the root of trade-offs between the total gravimetric and volumetric H2 uptake in porous materials. Additionally, CUS incorporation improves the affinity of PAF materials to H2 molecules, resulting in an enhancement of the volumetric hydrogen storage capacity.
  • 加载中
    1. [1]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444  doi: 10.1126/science.1230444

    2. [2]

      Durbin, D. J.; Malardier-Jugroot, C. Int. J. Hydrog. Energy 2013, 38, 14595. doi: 10.1016/j.ijhydene.2013.07.058  doi: 10.1016/j.ijhydene.2013.07.058

    3. [3]

      Cipriani, G.; Dio, V. D.; Genduso, F.; Cascia, D. L.; Liga, R.; Miceli, R.; Galluzzo, G. R. Int. J. Hydrog. Energy 2014, 39, 8482. doi: 10.1016/j.ijhydene.2014.03.174  doi: 10.1016/j.ijhydene.2014.03.174

    4. [4]

      https://energy.gov/eere/fuelcells/physical-hydrogen-storage(accessed 12 June 2017).

    5. [5]

      Mulder, F. M.; Dingemans, T. J.; Wagemaker, M.; Kearley, G. J. Chem. Phys. 2005, 317, 113. doi: 10.1016/j.chemphys.2005.06.003  doi: 10.1016/j.chemphys.2005.06.003

    6. [6]

      Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.; Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116, 13143. doi: 10.1021/jp302356q  doi: 10.1021/jp302356q

    7. [7]

      Mendoza-Cortes, J. L.; Goddard, W. A., III; Furukawa, H.; Yaghi, O. M. J. Phys. Chem. Lett. 2012, 3, 2671. doi: 10.1021/jz301000m  doi: 10.1021/jz301000m

    8. [8]

      Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548. doi: 10.1039/C2CS35072F  doi: 10.1039/C2CS35072F

    9. [9]

      Huang, L.; Yang, X.; Cao, D. J. Phys. Chem. C 2015, 119, 3260. doi: 10.1021/jp5128404  doi: 10.1021/jp5128404

    10. [10]

      Huang, L.; Xiang, Z.; Cao, D. J. Mater. Chem. A 2013, 1, 3851. doi: 10.1039/C3TA10292K  doi: 10.1039/C3TA10292K

    11. [11]

      Tozzini, V.; Pellegrini, V. Phys. Chem. Chem. Phys. 2013, 15, 80. doi: 10.1039/C2CP42538F  doi: 10.1039/C2CP42538F

    12. [12]

      Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem. 2009, 121, 9621. doi: 10.1002/ange.200904637  doi: 10.1002/ange.200904637

    13. [13]

      Lan, J.; Cao, D.; Wang, W.; Ben, T.; Zhu, G.J. Phys. Chem. Lett. 2010, 1, 978. doi: 10.1021/jz900475b  doi: 10.1021/jz900475b

    14. [14]

      Lan, J.; Cao, D.; Wang, W. J. Phys. Chem. C 2010, 114, 3108. doi: 10.1021/jp9106525  doi: 10.1021/jp9106525

    15. [15]

      Xiang, Z.; Cao, D.; Wang, W.; Yang, W.; Han, B.; Lu, J. J. Phys. Chem. C 2012, 116, 5974. doi: 10.1021/jp300137e  doi: 10.1021/jp300137e

    16. [16]

      Gómez-Gualdrón, D. A.; Simon, C. M.; Lassman, W.; Chen, D.; Martin, R. L.; Haranczyk, M.; Farha, O. K.; Smit, B.; Snurr, R. Q. Chem. Eng. Sci 2017, 159, 18. doi: 10.1016/j.ces.2016.02.030  doi: 10.1016/j.ces.2016.02.030

    17. [17]

      Gygi, D.; Bloch, E. D.; Mason, J. A.; Hudson, M. R.; Gonzalez, M. I.; Siegelman, R. L.; Darwish, T. A.; Queen, W. L.; Brown, C. M.; Long, J. R. Chem. Mater. 2016, 28, 1128. doi: 10.1021/acs.chemmater.5b04538  doi: 10.1021/acs.chemmater.5b04538

    18. [18]

      Getman, R. B.; Miller, J. H.; Wang, K.; Snurr, R. Q. J. Phys. Chem. C 2011, 115, 2066. doi: 10.1021/jp1094068  doi: 10.1021/jp1094068

    19. [19]

      Colón, Y. J.; Fairenjimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383. doi: 10.1021/jp4122326  doi: 10.1021/jp4122326

    20. [20]

      Wu, X.; Wang, R.; Yang, H.; Wang, W.; Cai, W.; Li, Q. J. Mater. Chem. A 2015, 3, 10724. doi: 10.1039/c5ta01290b  doi: 10.1039/c5ta01290b

    21. [21]

      Wu, X. J.; Zhao, P.; Fang, J. M.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys. -Chim. Sin. 2014, 30, 2043.  doi: 10.3866/PKU.WHXB201409222

    22. [22]

      Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    23. [23]

      Düren, T.; Millange, F.; Ferey, G.; Walton, K. S.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 15350. doi: 10.1021/jp074723h  doi: 10.1021/jp074723h

    24. [24]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134. doi: 10.1016/j.micromeso.2011.08.020  doi: 10.1016/j.micromeso.2011.08.020

    25. [25]

      Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    26. [26]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758  doi: 10.1103/PhysRevB.59.1758

    27. [27]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    28. [28]

      Kiefer, J. Proc. Am. Math. Soc.1953, 4, 502. doi: 10.2307/2032161  doi: 10.2307/2032161

    29. [29]

      Chempath, S.; Clark, L. A.; Snurr, R. Q. J. Chem. Phys. 2003, 118, 7635. doi: 10.1063/1.1562607  doi: 10.1063/1.1562607

    30. [30]

      Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15, 59. doi: 10.1021/i160057a011  doi: 10.1021/i160057a011

    31. [31]

      Wu, X.; Li, L.; Fang, T.; Wang, Y.; Cai, W.; Xiang, Z. Phys. Chem. Chem. Phys. 2017, 19, 9261. doi: 10.1039/C7CP01230F  doi: 10.1039/C7CP01230F

    32. [32]

      Gómez-Gualdrón, D. A.; Wang, T. C.; García-Holley, P.; Sawelewa, R. M.; Argueta, E.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K. ACS Appl. Mater. Interfaces 2017, doi: 10.1021/acsami.7b01190  doi: 10.1021/acsami.7b01190

    33. [33]

      Farha, O. K.; Yazaydın, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010 2, 944. doi: 10.1038/nchem.834  doi: 10.1038/nchem.834

    34. [34]

      Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279. doi: 10.1039/C6EE02104B  doi: 10.1039/C6EE02104B

    35. [35]

      Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J. Science 2010, 329, 424. doi: 10.1126/science.1192160  doi: 10.1126/science.1192160

    36. [36]

      Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176. doi: 0.1021/ja076877g

    37. [37]

      Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, 3197. doi: 10.1021/ja9015765  doi: 10.1021/ja9015765

    38. [38]

      Yuan, D.; Zhao, D.; Sun, D.; Zhou, H. C. Angew. Chem. Int. Ed. 2010, 49, 5357. doi: 10.1002/anie.201001009  doi: 10.1002/anie.201001009

    39. [39]

      Lim, W. X.; Thornton, A. W.; Hill, A. J.; Cox, B. J.; Hill, J. M.; Hill, M. R. Langmuir 2013, 29, 8524. doi: 10.1021/la401446s  doi: 10.1021/la401446s

    40. [40]

      Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 18794. doi: 10.1021/jp076657p  doi: 10.1021/jp076657p

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    5. [5]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    6. [6]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    19. [19]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(6)
  • Abstract views(388)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return