Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules
- Corresponding author: SIEPMANN J. Ilja, siepmann@umn.edu
Citation: XUE Bai, CHEN Tiannan, SIEPMANN J. Ilja. Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1106-1115. doi: 10.3866/PKU.WHXB201701083
Ladomenou, K.; Kitsopoulos, T. N.; Sharma, G. D.; Coutsolelos, A. G. RSC Adv. 2014, 4, 21379. doi: 10.1039/c4ra00985a
doi: 10.1039/c4ra00985a
Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovolt Res. Appl. 2015, 23, 1. doi: 10.1002/pip.2637
doi: 10.1002/pip.2637
Graetzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607.
doi: 10.1038/35104607
O'Regan, B.; Graetzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
doi: 10.1038/353737a0
Gong, J.; Liang, J.; Sumathy, K. Renew. Sust. Energ. Rev. 2012, 16, 5848. doi: 10.1016/j.rser.2012.04.044
doi: 10.1016/j.rser.2012.04.044
Deing, K. C.; Mayerh ffer, U.; Würthner, F.; Meerholz, K. Phys. Chem. Chem. Phys. 2012, 14, 8328. doi: 10.1039/c2cp40789b
doi: 10.1039/c2cp40789b
Luo, L.; Lin, C. -J.; Tsai, C. -Y.; Wu, H. -P.; Li, L. -L.; Lo, C. -F.; Lin, C. -Y.; Diau, E. W. -G. Phys. Chem. Chem. Phys. 2010, 12, 1064. doi: 10.1039/b919962d
doi: 10.1039/b919962d
Pastore, M.; De Angelis, F. ACS Nano 2010, 4, 556. doi: 10.1021/nn901518s
doi: 10.1021/nn901518s
El Seoud, O. A. Pure Appl. Chem. 2007, 79, 1135. doi: 10.1351/pac200779061135
doi: 10.1351/pac200779061135
Tada, E. B.; Novaki, L. P.; El Seoud, O. A. J. Phys. Org. Chem. 2000, 13, 679. doi: 10.1002/1099-1395(200011)13:11<679::AID-POC299>3.0.CO;2-R
doi: 10.1002/1099-1395(200011)13:11<679::AID-POC299>3.0.CO;2-R
Gao, J.; Zhang, J. Z. H.; Houk, K. N. Accounts Chem. Res. 2014, 47, 2711. doi: 10.1021/ar500293u
doi: 10.1021/ar500293u
Li, S.; Li, W.; Ma, J. Accounts Chem. Res. 2014, 47, 2712. doi: 10.1021/ar500038z
doi: 10.1021/ar500038z
Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; Truhlar, D. G. Accounts Chem. Res. 2014, 47, 2731. doi: 10.1021/ar500068a
doi: 10.1021/ar500068a
He, X.; Zhu, T.; Wang, X.; Liu, J.; Zhang, J. Z. H. Accounts Chem. Res. 2014, 47, 2748. doi: 10.1021/ar500077t
doi: 10.1021/ar500077t
Coutinho, K.; De Oliveira, M. J.; Canuto, S.Int. J. Quantum Chem. 1998, 66, 249. doi: 10.1002/(SICI)1097-461X(1998)66:3<249::AID-QUA6>3.0.CO;2-V
doi: 10.1002/(SICI)1097-461X(1998)66:3<249::AID-QUA6>3.0.CO;2-V
Jaramillo, P.; Pérez, P.; Fuentealba, P.; Canuto, S.; Coutinho, K. J. Phys. Chem. B 2009, 113, 4314. doi: 10.1021/jp808210y
doi: 10.1021/jp808210y
Barreto, R. C.; Coutinho, K.; Georg, H. C.; Canuto, S. Phys. Chem. Chem. Phys. 2009, 11, 1388. doi: 10.1039/b816912h
doi: 10.1039/b816912h
Aidas, K.; Kongsted, J.; Osted, A.; Mikkelsen, K. V.; Christiansen, O. J. Phys. Chem. A 2005, 109, 8001. doi: 10.1021/jp0527094
doi: 10.1021/jp0527094
Christopher, C. Essentials of Computational Chemistry: Theories and Models; John Wiley & Sons: Chichester, UK, 2013.
Masunov, A.; Tretiak, S.; Hong, J. W.; Liu, B.; Bazan, G. C. J. Chem. Phys. 2005, 122, 224505. doi: 10.1063/1.1878732
doi: 10.1063/1.1878732
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2015, 119, 958. doi: 10.1021/jp506293w
doi: 10.1021/jp506293w
Murugan, N. A. J. Phys. Chem. B 2011, 115, 1056. doi: 10.1021/jp1049342
doi: 10.1021/jp1049342
Wood, W. W.; Parker, F. R. J. Chem. Phys.1957, 27, 720. doi: 10.1063/1.1743822
doi: 10.1063/1.1743822
Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1987.
Ewald, P. Ann. Phys. 1921, 64, 253. doi: 10.1002/andp.19213690304
doi: 10.1002/andp.19213690304
Maitland, G. C.; Rigby, M.; Smith, E. B.; Wakeham, A. Intermolecular Forces: Their Origin and Determination; Pergamon Press: Oxford, UK, 1987.
Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2013, 117, 273. doi: 10.1021/jp307328x
doi: 10.1021/jp307328x
Zhang, L.; Siepmann, J. I. Theor. Chem. Acc. 2006, 115, 391. doi: 10.1007/s00214-005-0073-1
doi: 10.1007/s00214-005-0073-1
Marenich, A. V; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011. doi: 10.1021/ct7001418
doi: 10.1021/ct7001418
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01;Gaussian Inc.: Wallingford, CT, USA, 2013.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. CM5PAC; Uniersity of Minnesota: Minneapolis, MN, USA, 2011.
Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theor. Comput. 2012, 8, 527. doi: 10.1021/ct200866d
doi: 10.1021/ct200866d
Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569. doi: 10.1021/jp972543+
doi: 10.1021/jp972543+
Wick, C. D.; Stubbs, J. M.; Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2005, 109, 18974. doi: 10.1021/jp0504827
doi: 10.1021/jp0504827
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869
doi: 10.1063/1.445869
Thompson, M. A.; Zerner, M. C. J. Am. Chem. Soc. 1991, 113, 8210. doi: 10.1021/ja00022a003
doi: 10.1021/ja00022a003
Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T. J. Am. Chem. Soc. 1980, 102, 589. doi: 10.1021/ja00522a025
doi: 10.1021/ja00522a025
Hollas, J. M. Modern Spectroscopy; John Wiley & Sons: Chichester, UK, 2004.
Voityuk, A. A.; Kummer, A. D.; Michel-Beyerle, M. -E.; Rösch, N. Chem. Phys. 2001, 269, 83. doi: 10.1016/S0301-0104(01)00334-2
doi: 10.1016/S0301-0104(01)00334-2
Lin, Y. L.; Gao, J. J. Chem. Theory Comput. 2007, 3, 1484. doi: 10.1021/ct700058c
doi: 10.1021/ct700058c
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Yanbing Shen , Yuan Yuan , Yaxin Wang , Xiaonan Ma , Wensheng Yang , Yulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761