Citation: XUE Bai, CHEN Tiannan, SIEPMANN J. Ilja. Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1106-1115. doi: 10.3866/PKU.WHXB201701083 shu

Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules

  • Corresponding author: SIEPMANN J. Ilja, siepmann@umn.edu
  • Received Date: 14 December 2017
    Revised Date: 3 January 2018
    Accepted Date: 4 January 2018
    Available Online: 8 October 2018

  • Dye-sensitized solar cells (DSSCs) are one of the most promising renewable energy technologies. Charge transfer and charge transport are pivotal processes in DSSCs, which govern solar energy capture and conversion. These processes can be probed using modern electronic structure methods. Because of the heterogeneity and complexity of the local environment of a chromophore in DSSCs (such as solvatochromism and chromophore aggregation), a part of the solvation environment should be treated explicitly during the calculation. However, because of the high computational cost and unfavorable scaling with the number of electrons of high-level quantum mechanical methods, approaches to explicitly treat the local environment need careful consideration. Two problems must be tackled to reduce computational cost. First, the number of configurations representing the solvent distribution should be limited as much as possible. Second, the size of the explicit region should be kept relatively small. The purpose of this study is to develop efficient computational approaches to select representative configurations and to limit the explicit solvent region to reduce the computational cost for later (higher-level) quantum mechanical calculations. For this purpose, an ensemble of solvent configurations around a 1-methyl-8-oxyquinolinium betaine (QB) dye molecule was generated using Monte Carlo simulations and molecular mechanics force fields. Then, a fitness function was developed using data from inexpensive electronic structure calculations to reduce the number of configurations. Specific solvent molecules were also selected for explicit treatment based on a distance criterion, and those not selected were treated as background charges. The configurations and solvent molecules selected proved to be good representatives of the entire ensemble; thus, expensive electronic structure calculations need to be performed only on this subset of the system, which significantly reduces the computational cost.
  • 加载中
    1. [1]

      Ladomenou, K.; Kitsopoulos, T. N.; Sharma, G. D.; Coutsolelos, A. G. RSC Adv. 2014, 4, 21379. doi: 10.1039/c4ra00985a  doi: 10.1039/c4ra00985a

    2. [2]

      Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovolt Res. Appl. 2015, 23, 1. doi: 10.1002/pip.2637  doi: 10.1002/pip.2637

    3. [3]

      Graetzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607.  doi: 10.1038/35104607

    4. [4]

      O'Regan, B.; Graetzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0  doi: 10.1038/353737a0

    5. [5]

      Gong, J.; Liang, J.; Sumathy, K. Renew. Sust. Energ. Rev. 2012, 16, 5848. doi: 10.1016/j.rser.2012.04.044  doi: 10.1016/j.rser.2012.04.044

    6. [6]

      Deing, K. C.; Mayerh ffer, U.; Würthner, F.; Meerholz, K. Phys. Chem. Chem. Phys. 2012, 14, 8328. doi: 10.1039/c2cp40789b  doi: 10.1039/c2cp40789b

    7. [7]

      Luo, L.; Lin, C. -J.; Tsai, C. -Y.; Wu, H. -P.; Li, L. -L.; Lo, C. -F.; Lin, C. -Y.; Diau, E. W. -G. Phys. Chem. Chem. Phys. 2010, 12, 1064. doi: 10.1039/b919962d  doi: 10.1039/b919962d

    8. [8]

      Pastore, M.; De Angelis, F. ACS Nano 2010, 4, 556. doi: 10.1021/nn901518s  doi: 10.1021/nn901518s

    9. [9]

      El Seoud, O. A. Pure Appl. Chem. 2007, 79, 1135. doi: 10.1351/pac200779061135  doi: 10.1351/pac200779061135

    10. [10]

      Tada, E. B.; Novaki, L. P.; El Seoud, O. A. J. Phys. Org. Chem. 2000, 13, 679. doi: 10.1002/1099-1395(200011)13:11<679::AID-POC299>3.0.CO;2-R  doi: 10.1002/1099-1395(200011)13:11<679::AID-POC299>3.0.CO;2-R

    11. [11]

      Gao, J.; Zhang, J. Z. H.; Houk, K. N. Accounts Chem. Res. 2014, 47, 2711. doi: 10.1021/ar500293u  doi: 10.1021/ar500293u

    12. [12]

      Li, S.; Li, W.; Ma, J. Accounts Chem. Res. 2014, 47, 2712. doi: 10.1021/ar500038z  doi: 10.1021/ar500038z

    13. [13]

      Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; Truhlar, D. G. Accounts Chem. Res. 2014, 47, 2731. doi: 10.1021/ar500068a  doi: 10.1021/ar500068a

    14. [14]

      He, X.; Zhu, T.; Wang, X.; Liu, J.; Zhang, J. Z. H. Accounts Chem. Res. 2014, 47, 2748. doi: 10.1021/ar500077t  doi: 10.1021/ar500077t

    15. [15]

      Coutinho, K.; De Oliveira, M. J.; Canuto, S.Int. J. Quantum Chem. 1998, 66, 249. doi: 10.1002/(SICI)1097-461X(1998)66:3<249::AID-QUA6>3.0.CO;2-V  doi: 10.1002/(SICI)1097-461X(1998)66:3<249::AID-QUA6>3.0.CO;2-V

    16. [16]

      Jaramillo, P.; Pérez, P.; Fuentealba, P.; Canuto, S.; Coutinho, K. J. Phys. Chem. B 2009, 113, 4314. doi: 10.1021/jp808210y  doi: 10.1021/jp808210y

    17. [17]

      Barreto, R. C.; Coutinho, K.; Georg, H. C.; Canuto, S. Phys. Chem. Chem. Phys. 2009, 11, 1388. doi: 10.1039/b816912h  doi: 10.1039/b816912h

    18. [18]

      Aidas, K.; Kongsted, J.; Osted, A.; Mikkelsen, K. V.; Christiansen, O. J. Phys. Chem. A 2005, 109, 8001. doi: 10.1021/jp0527094  doi: 10.1021/jp0527094

    19. [19]

      Christopher, C. Essentials of Computational Chemistry: Theories and Models; John Wiley & Sons: Chichester, UK, 2013.

    20. [20]

      Masunov, A.; Tretiak, S.; Hong, J. W.; Liu, B.; Bazan, G. C. J. Chem. Phys. 2005, 122, 224505. doi: 10.1063/1.1878732  doi: 10.1063/1.1878732

    21. [21]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2015, 119, 958. doi: 10.1021/jp506293w  doi: 10.1021/jp506293w

    22. [22]

      Murugan, N. A. J. Phys. Chem. B 2011, 115, 1056. doi: 10.1021/jp1049342  doi: 10.1021/jp1049342

    23. [23]

      Wood, W. W.; Parker, F. R. J. Chem. Phys.1957, 27, 720. doi: 10.1063/1.1743822  doi: 10.1063/1.1743822

    24. [24]

      Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1987.

    25. [25]

      Ewald, P. Ann. Phys. 1921, 64, 253. doi: 10.1002/andp.19213690304  doi: 10.1002/andp.19213690304

    26. [26]

      Maitland, G. C.; Rigby, M.; Smith, E. B.; Wakeham, A. Intermolecular Forces: Their Origin and Determination; Pergamon Press: Oxford, UK, 1987.

    27. [27]

      Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2013, 117, 273. doi: 10.1021/jp307328x  doi: 10.1021/jp307328x

    28. [28]

      Zhang, L.; Siepmann, J. I. Theor. Chem. Acc. 2006, 115, 391. doi: 10.1007/s00214-005-0073-1  doi: 10.1007/s00214-005-0073-1

    29. [29]

      Marenich, A. V; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011. doi: 10.1021/ct7001418  doi: 10.1021/ct7001418

    30. [30]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01;Gaussian Inc.: Wallingford, CT, USA, 2013.

    31. [31]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. CM5PAC; Uniersity of Minnesota: Minneapolis, MN, USA, 2011.

    32. [32]

      Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theor. Comput. 2012, 8, 527. doi: 10.1021/ct200866d  doi: 10.1021/ct200866d

    33. [33]

      Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569. doi: 10.1021/jp972543+  doi: 10.1021/jp972543+

    34. [34]

      Wick, C. D.; Stubbs, J. M.; Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2005, 109, 18974. doi: 10.1021/jp0504827  doi: 10.1021/jp0504827

    35. [35]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869  doi: 10.1063/1.445869

    36. [36]

      Thompson, M. A.; Zerner, M. C. J. Am. Chem. Soc. 1991, 113, 8210. doi: 10.1021/ja00022a003  doi: 10.1021/ja00022a003

    37. [37]

      Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T. J. Am. Chem. Soc. 1980, 102, 589. doi: 10.1021/ja00522a025  doi: 10.1021/ja00522a025

    38. [38]

      Hollas, J. M. Modern Spectroscopy; John Wiley & Sons: Chichester, UK, 2004.

    39. [39]

      Voityuk, A. A.; Kummer, A. D.; Michel-Beyerle, M. -E.; Rösch, N. Chem. Phys. 2001, 269, 83. doi: 10.1016/S0301-0104(01)00334-2  doi: 10.1016/S0301-0104(01)00334-2

    40. [40]

      Lin, Y. L.; Gao, J. J. Chem. Theory Comput. 2007, 3, 1484. doi: 10.1021/ct700058c  doi: 10.1021/ct700058c

  • 加载中
    1. [1]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    2. [2]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    3. [3]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    4. [4]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    5. [5]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    6. [6]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    7. [7]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    8. [8]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

Metrics
  • PDF Downloads(9)
  • Abstract views(472)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return