光电催化分解水的光阳极改性策略

邱伟涛 黄勇潮 王子龙 肖爽 纪红兵 童叶翔

引用本文: 邱伟涛,  黄勇潮,  王子龙,  肖爽,  纪红兵,  童叶翔. 光电催化分解水的光阳极改性策略[J]. 物理化学学报, 2017, 33(1): 80-102. doi: 10.3866/PKU.WHXB201607293 shu
Citation:  QIU Wei-Tao,  HUANG Yong-Chao,  WANG Zi-Long,  XIAO Shuang,  JI Hong-Bing,  TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102. doi: 10.3866/PKU.WHXB201607293 shu

光电催化分解水的光阳极改性策略

    作者简介: QIU Wei-Tao,received his BS degree in chemistry from Sun Yat-Sen University in 2014.He is currently a 2nd year master of physical chemistry student in Prof.TONGYe-Xiang's group at Sun Yat-Sen University.His research focuses on the development of nanostructured materials and their application in energy conversion/storage fields like photo-electrochemical water splitting and lithium-ion batteries;HUANG Yong-Chao,obtained his BS degree in Chemistry from Huizhou University in 2011 and MS degree from Jinan University in 2013.He received his PhD in School of Chemistry and Chemical Engineering of Sun Yat-Sen University in 2016.His research interests focuses on fabrication of functional nanostructures for applications in environment,such as photo-electrochemical/photo-catalytic water splitting,industrial wastewater and volatile organic compounds treatment;WANG Zi-Long,received his BS (2010) and MS (2012) in the School of Chemistry and Chemical Engineering from Sun Yat-Sen University in China.He is currently a PhD candidate in Prof.YANG Shi-He's group in the Department of Chemistry of the Hong Kong University of Science and Technology.His current research focuses on nano-materials and their applications for energy storage and fuel cells;XIAO Shuang,received his BS degree (2012) in School of Physics from Huazhong University of Science and Technology in China.He is currently a PhD candidate in Professor YANG Shi-He's group in Department of Chemistry from the Hong Kong University of Science and Technology.His current research focuses on perovskite solar cells,photoelectrochemical cells and catalysts;JI Hong-Bing,is currently a professor in School of Chemistry and Chemical Engineering at Sun Yat-Sen University.He received his PhD in the Department of Chemical Engineering from South China University of Technology in 1997.After completing his PhD,he was a lecturer (1997),associate professor (2003) and professor (2006) at South China University of Technology.He carried out his postdoctoral research at Osaka University in Japan from 2000-2002.His research focuses on catalysis and electrochemistry;TONG Ye-Xiang,received his BS degeree in General Chemistry in 1985,MS in Physical Chemistry in 1988,and PhD in Organic Chemistry in 1999 from Sun Yat-Sen University.He is a professor of Chemistry in School of Chemistry at Sun Yat-Sen University.His current research focuses on the electrochemical synthesis of alloys,intermetallic compounds and metal oxide nanomaterials,and investigation of their applications for energy conversion and storage.;





  • 基金项目:

    国家杰出青年科学基金(21425627),国家自然科学基金(21461162003,21476271)及广东省自然科学基金(2014KTSCX004,2014A030308012)资助项目

摘要: 光电催化分解水系统能直接将收集的电子与空穴用于分解水,将太阳能转化成了具有高能量密度的氢气,是一种集太阳能转化和储存于一体的高效绿色能源系统。光阴极和光阳极串联要求其在工作状态下两电极通过的总电流必须一致,低效率的一端将会限制整个体系的反应速度,因此对于光阳极材料的系统研究具有十分重要的意义。理论预测表明,基于部分可见光响应的半导体光阳极能带间隙计算得到的极限太阳能制氢转化效率达到了15%。但实际上由于光催化的整个过程是一个多步反应,各个步骤上发生的光生载流子的复合和损失导致了目前合成的相关电极材料的转换效率远低于理论水平。一般可以认为光催化过程包括五个步骤:光电极材料中电子的光致激发而产生电子-空穴对、电子和空穴由于能带弯曲的反向分离和传递、电子(或空穴)通过半导体-电解液界面的注入水中析氢(或析氧)、载流子的复合以及反应物和产物的传质过程。由于这些过程的进行效率与电极材料的本质特性和性能密切相关,为了评估材料性能而引入的一些效率指标往往和这几个步骤相对应。本文首先简要介绍了评价光阳极的一些效率计算以及它们与上述各个步骤的内在联系。最后,在前人和最近的研究基础上总结了几种对光阳极材料的主要提升策略,包括形貌控制、元素掺杂、异(同)质结和表面修饰等改性方法,对这些改性方法和各步骤效率之间的联系作了简单的介绍。

English

    1. [1]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d

    2. [2]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    3. [3]

      Gan, J.; Lu, X.; Tong, Y. Nanoscale 2014, 6, 7142. doi: 10.1039/c4nr01181c

    4. [4]

      Lu, X.; Xie, S.; Yang, H.; Tong, Y.; Ji, H. Chem. Soc. Rev. 2014, 43, 7581. doi: 10.1039/c3cs60392j

    5. [5]

      Xie, S.; Li, M.; Wei, W.; Zhai, T.; Fang, P.; Qiu, R.; Lu, X.; Tong, Y. Nano Energy 2014, 10, 313. doi: 10.1016/j.nanoen.2014.09.029

    6. [6]

      Yang, Y.; Ling, Y.; Wang, G.; Liu, T.; Wang, F.; Zhai, T.; Tong, Y.; Li, Y. Nano Lett. 2015, 15, 7051. doi: 10.1021/acs.nanolett.5b03114

    7. [7]

      Li, T.; He, J.; Peña, B.; Berlinguette, C. P. Angew. Chem. Int. Edit. 2016, 55, 1769. doi: 10.1002/anie.201509567

    8. [8]

      Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting; Springer: Heidelberg, 2013; pp 1-15.

    9. [9]

      Miller, E. L. Energy Environ. Sci. 2015, 8, 2809. doi: 10.1039C5EE90047F

    10. [10]

      Li, R.; Weng, Y.; Zhou, X.; Wang, X.; Mi, Y.; Chong, R.; Han, H.; Li, C. Energy Environ. Sci. 2015, 8, 2377. doi: 10.1039c5ee01398d

    11. [11]

      Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5, 104. doi: 10.1002/smll.200800902

    12. [12]

      Wang, H.; Deutsch, T.; Turner, J. A. J. Electrochem. Soc. 2008, 155, F91. doi: 10.1149/1.2888477

    13. [13]

      Feng, K.; Li, W.; Xie, S.; Lu, X. Electrochim. Acta 2014, 137, 108. doi: 10.1016/j.electacta.2014.05.152

    14. [14]

      Cesar, I.; Kay, A.; Gonzalez Martinez, J. A.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 4582. doi: 10.1021/ja060292p

    15. [15]

      Rahman, M. A.; Bazargan, S.; Srivastava, S.; Wang, X.; Abd-Ellah, M.; Thomas, J. P.; Heinig, N. F.; Pradhan, D.; Leung, K.T. Energy Environ. Sci. 2015, 8, 3363. doi: 10.1039c5ee01615k

    16. [16]

      Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.W. Chem. Mater. 2008, 20, 3803. doi: 10.1021/cm800144q

    17. [17]

      Cho, S. K.; Park, H. S.; Lee, H. C.; Nam, K. M.; Bard, A. J.J. Phys. Chem. C 2013, 117, 23048. doi: 10.1021/jp408619u

    18. [18]

      Chen, L.; Toma, F. M.; Cooper, J. K.; Lyon, A.; Lin, Y.; Sharp, I. D.; Ager, J.W. ChemSusChem 2015, 8, 1066. doi: 10.1002cssc.201402984

    19. [19]

      Tong, L.; Iwase, A.; Nattestad, A.; Bach, Udo.; Weidelener, M.; Gotz, G.; Mishra, A.; Bauerle, P.; Amal, R.; Wallace, G. G.; Mozer, A. J. Energy Environ. Sci. 2012, 5, 9472. doi: 10.1039C2EE22866A

    20. [20]

      Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928. doi: 10.1021/nl2000743

    21. [21]

      Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J.M.; Yang, P.; Zheng, X. Nano Lett. 2014, 14, 1099. doi: 10.1021/nl500022z

    22. [22]

      Higashi, M.; Domen, K.; Abe, R. J. Am. Chem. Soc. 2012, 134, 6968. doi: 10.1021/ja302059g

    23. [23]

      Ding, C.; Shi, J.; Wang, D.; Wang, Z.; Wang, N.; Liu, G.; Xiong, F.; Li, C. Phys. Chem. Chem. Phys. 2013, 15, 4589. doi: 10.1039/c3cp50295c

    24. [24]

      Abdi, F. F.; van de Krol, R. J. Phys. Chem. C 2012, 116, 9398. doi: 10.1021/jp3007552

    25. [25]

      Abdi, F. F.; Firet, N.; van de Krol, R. ChemCatChem 2013, 5, 490. doi: 10.1002/cctc.201200472.

    26. [26]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S.W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326

    27. [27]

      Kim, T.W.; Choi, K. S. Science 2014, 343, 990. doi: 10.1126science.1246913

    28. [28]

      Qiu, W.; Huang, Y.; Long, B.; Li, H.; Tong, Y.; Ji, H.Chem. -Eur. J. 2015, 21, 19250. doi: 10.1002/chem.201503261

    29. [29]

      Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011, 133, 18370. doi: 10.1021/ja207348x

    30. [30]

      Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S.C. Energy Environ. Sci. 2011, 4, 958. doi: 10.1039/c0ee00570c

    31. [31]

      Shi, X.; Choi, I. Y.; Zhang, K.; Kwon, J.; Kim, D. Y.; Lee, J.K.; Oh, S. H.; Kim, J. K.; Park, J. H. Nat. Comm. 2014, 5, 4775. doi: 10.1038/ncomms5775

    32. [32]

      Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J.J. Am. Chem. Soc. 2015, 137, 8356. doi: 10.1021/jacs.5b04186

    33. [33]

      Rettie, A. J.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C.B. J. Am. Chem. Soc. 2013, 135, 11389. doi: 10.1021ja405550k

    34. [34]

      Hahn, N. T.; Ye, H.; Flaherty, D.W.; Bard, A. J.; Mullins, C. B.ACS Nano 2010, 4, 1977. doi: 10.1021/nn100032y

    35. [35]

      Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.; Fujita, D.; Tosa, M.; Kondo, M.; Kitamori, T. Sci. Rep. 2015, 5, 11141. doi: 10.1038/srep11141

    36. [36]

      Li, M.; Zhang, Z.; Lyu, F.; He, X.; Liang, Z.; Balogun, M. S.; Lu, X.; Fang, P. P.; Tong, Y. Electrochim. Acta 2015, 186, 95. doi: 10.1016/j.electacta.2015.10.048

    37. [37]

      Peng, Q.; Kalanyan, B.; Hoertz, P. G.; Miller, A.; Kim, D. H.; Hanson, K.; Alibabaei, L.; Liu, J.; Meyer, T. J.; Parsons, G. N.; Glass, J. T. Nano Lett. 2013, 13, 1481. doi: 10.1021/nl3045525

    38. [38]

      Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048. doi: 10.1021/cm8030208

    39. [39]

      Xu, M.; Da, P.; Wu, H.; Zhao, D.; Zheng, G. Nano Lett. 2012, 12, 1503. doi: 10.1021/nl2042968

    40. [40]

      Wang, G.; Ling, Y.; Wheeler, D. A.; George, K. E.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3503. doi: 10.1021/nl202316j

    41. [41]

      Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G.D.; McFarland, E.W. J. Phys. Chem. C 2008, 112, 15900. doi: 10.1021/jp803775j

    42. [42]

      Zhang, P.; Kleiman-Shwarsctein, A.; Hu, Y. S.; Lefton, J.; Sharma, S.; Forman, A. J.; McFarland, E. Energy Environ. Sci. 2011, 4, 1020. doi: 10.1039/c0ee00656d

    43. [43]

      Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Brown, L. D.; Turner, J. A.; Herring, A. M. Phys. Chem. Chem. Phys. 2013, 15, 3273. doi: 10.1039/c2cp44577H

    44. [44]

      Liu, Q.; He, J.; Yao, T.; Sun, Z.; Cheng, W.; He, S.; Xie, Y.; Peng, Y.; Cheng, H.; Sun, Y.; Jiang, Y.; Hu, F.; Xie, Z.; Yan, W.; Pan, Z.; Wu, Z.; Wei, S. Nat. Commun. 2014, 5, 5122. doi: 10.1038/ncomms6122

    45. [45]

      Abdi, F. F.; Han, L.; Smets, A. H.; Zeman, M.; Dam, B.; vande Krol, R. Nat. Commun. 2013, 4, 2195. doi: 10.1038ncomms3195

    46. [46]

      Coridan, R. H.; Arpin, K. A.; Brunschwig, B. S.; Braun, P. V.; Lewis, N. S. Nano Lett. 2014, 14, 2310. doi: 10.1021/nl404623t

    47. [47]

      Lin, F.; Boettcher, S.W. Nat. Mater. 2014, 13, 81. doi: 10.1038/nmat3811

    48. [48]

      Li, R.; Zhang, F.; Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.; Han, H.; Li, C. Nat. Commun. 2013, 4, 1432. doi: 10.1038ncomms2401

    49. [49]

      Wang, G.; Ling, Y.; Lu, X.; Zhai, T.; Qian, F.; Tong, Y.; Li, Y.Nanoscale 2013, 5, 4129. doi: 10.1039/c3nr00569k

    50. [50]

      Xie, S.; Lu, X.; Zhai, T.; Li, W.; Yu, M.; Liang, C.; Tong, Y.J. Mater. Chem. 2012, 22, 14272. doi: 10.1039/c2jm32605a

    51. [51]

      Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Angew. Chem. 2013, 125, 1286. doi: 10.1002/ange.201207578

    52. [52]

      Li, M.; Zhang, Z.; Lyu, F.; He, X.; Liang, Z.; Balogun, M.; Lu, X.; Fang, P.; Tong, Y. Electrochim. Acta 2015, 186, 95. doi: 00.1016/j.electacta.2015.10.048

    53. [53]

      Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. Nano Lett. 2011, 11, 203. doi: 10.1021/nl1034573

    54. [54]

      Hou, Y.; Zuo, F.; Dagg, A. P.; Liu, J.; Feng, P. Adv. Mater. 2014, 26, 5043. doi: 10.1002/adma.201401032

    55. [55]

      Yu, Q.; Meng, X.; Wang, T.; Li, P.; Ye, J. Adv. Funct. Mater. 2015, 25, 2686. doi: 10.1002/adfm.201500383

    56. [56]

      Li, W.; Da, P.; Zhang, Y.; Wang, Y.; Lin, X.; Gong, X.; Zheng, G. ACS Nano 2014, 8, 11770. doi: 10.1021/nn5053684

    57. [57]

      Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S.J. Phys. Chem. C 2007, 111, 8677. doi: 10.1021/jp071906v

    58. [58]

      Kim, H. I.; Monllor-Satoca, D.; Kim, W.; Choi, W. Energy Environ. Sci. 2015, 8, 247. doi: 10.1039/c4ee02169J

    59. [59]

      Zhang, Z.; Zhang, L.; Hedhili, M. N.; Zhang, H.; Wang, P.Nano Lett. 2013, 13, 14. doi: 10.1021/nl3029202

    60. [60]

      Grigorescu, S.; Bärhausen, B.; Wang, L.; Mazare, A.; Yoo, J.E.; Hahn, R.; Schmuki, P. Electrochem. Commun. 2015, 51, 85. doi: 10.1016/j.elecom.2014.12.019

    61. [61]

      Reyes-Gil, K. R.; Robinson, D. B. ACS Appl. Mater. Inter. 2013, 5, 12400. doi: 10.1021/am403369p

    62. [62]

      McDonald, K. J.; Choi, K. S. Energy Environ. Sci. 2012, 5, 8553. doi: 10.1039/c2ee22608a

    63. [63]

      Jia, Q.; Lwashina, K.; Kudo, A. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 11564. doi: 10.1073/pnas.1204623109

    64. [64]

      Hodes, G.; Cahen, D.; Manassen, J. Nature 1976, 260, 312. doi: 10.1038/260312a0

    65. [65]

      Li, L.; Yu, Y.; Meng, F.; Tan, Y.; Hamers, R. J.; Jin, S. Nano Lett. 2012, 12, 724. doi: 10.1021/nl2036854

    66. [66]

      Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. Adv. Mater. 2005, 17, 2320. doi: 10.1002adma.200500992

    67. [67]

      Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2005, 5, 191. doi: 10.1021/nl048301k

    68. [68]

      Cho, I. S.; Chen, Z.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. Nano Lett. 2011, 11, 4978. doi: 10.1021/nl2029392

    69. [69]

      Liang, S.; He, J.; Sun, Z.; Liu, Q.; Jiang, Y.; Cheng, H.; He, B.; Xie, Z.; Wei, S. J. Phys. Chem. C 2012, 116, 9049. doi: 10.1021/jp300552s

    70. [70]

      Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Gratzel, M. J. Phys. Chem. C 2008, 113, 772. doi: 10.1021/jp809060p

    71. [71]

      Zhou, M.; Bao, J.; Xu, Y.; Zhang, J.; Xie, J.; Guan, M.; Wang, C.; Wen, L.; Lei, Y.; Xie, Y. ACS Nano 2014, 8, 7088. doi: 10.1021/nn501996a

    72. [72]

      Ma, M.; Kim, J. K.; Zhang, K.; Shi, X.; Kim, S. J.; Moon, J.H.; Park, J. H. Chem. Mater. 2014, 26, 5592. doi: 10.1021cm502073d

    73. [73]

      Xie, S.; Zhai, T.; Zhu, Y.; Li, W.; Qiu, R.; Tong, Y.; Lu, X. Int. J. Hydrog. Energy 2014, 39, 4820. doi: 10.1016/j.ijhydene.2014.01.072

    74. [74]

      Beranek, R.; Kisch, H. Electrochem. Commun. 2007, 9, 761. doi: 10.1016/j.elecom.2006.11.011

    75. [75]

      Seabold, J. A.; Zhu, K.; Neale, N. R. Phys. Chem. Chem. Phys. 2014, 16, 1121. doi: 10.1039/c3cp54356k

    76. [76]

      Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134, 3659. doi: 10.1021ja211369s

    77. [77]

      Seo, J.; Takata, T.; Nakabayashi, M.; Hisatomi, T.; Shibata, N.; Minegishi, T.; Domen, K. J. Am. Chem. Soc. 2015, 137, 12780. doi: 10.1021/jacs.5b08329

    78. [78]

      Bjoerksten, U.; Moser, J.; Grätzel, M. Chem. Mater. 1994, 6, 858. doi: 10.1021/cm00042a026

    79. [79]

      Sivula, K.; Zboril, R.; Formal, F. L.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132, 7436. doi: 10.1021/ja101564f

    80. [80]

      Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 2119. doi: 10.1021/nl200708y

    81. [81]

      Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science 2003, 34, 2243. doi: 10.1021/ja101564f

    82. [82]

      Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2009, 9, 2331. doi: 10.1021/nl900772q

    83. [83]

      Park, J. H.; Kim, S.; Bard, A. J. Nano Lett. 2006, 6, 24. doi: 10.1021/nl051807y

    84. [84]

      Hoang, S.; Guo, S.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Nano Lett. 2012, 12, 26. doi: 10.1021/nl2028188

    85. [85]

      Yang, K.; Dai, Y.; Huang, B.; Whangbo, M. H. J. Phys. Chem. C 2009, 113, 2624. doi: 10.1021/jp808483a

    86. [86]

      Chen, X.; Burda, C. J. Am. Chem. Soc. 2008, 130, 5018. doi: 10.1021/ja711023z

    87. [87]

      Tachikawa, T.; Tojo, S.; Kawai, K.; Endo, M.; Fujitsuka, M.; Ohno, T.; Nishijima, K.; Miyamoto, Z.; Majima, T. J. Phys. Chem. B 2004, 108, 19299. doi: 10.1021/jp0470593

    88. [88]

      Kim, T.W.; Ping, Y.; Galli, G. A.; Choi, K. S. Nat. Commun. 2015, 6, 8769. doi: 10.1038/ncomms9769

    89. [89]

      Lu, G.; Linsebigler, A.; Yates, J. T., Jr. J. Phys. Chem. 1994, 98, 11733. doi: 10.1021/j100096a017

    90. [90]

      Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P.J. Am. Chem. Soc. 2010, 132, 11856. doi: 10.1021/ja103843d

    91. [91]

      Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. doi: 10.1021/nl201766h.

    92. [92]

      Kraut, E.; Grant, R.; Waldrop, J.; Kowalczyk, S. Phys. Rev. Lett. 1980, 44, 1620. doi: 10.1103/PhysRevLett.44.1620

    93. [93]

      Pan, K.; Dong, Y.; Zhou, W.; Pan, Q.; Xie, Y.; Xie, T.; Tian, G.; Wang, G. ACS Appl. Mater. Inter. 2013, 5, 8314. doi: 10.1021am402154k

    94. [94]

      McDonald, K. J.; Choi, K. S. Chem. Mater. 2011, 23, 4863. doi: 10.1021/cm202399g

    95. [95]

      Coridan, R. H.; Shaner, M.; Wiggenhorn, C.; Brunschwig, B.S.; Lewis, N. S. J. Phys. Chem. C 2013, 117, 6949. doi: 10.1021/jp311947x

    96. [96]

      He, Z.; Shi, Y.; Gao, C.; Wen, L.; Chen, J.; Song, S. J. Phys. Chem. C 2014, 118, 389. doi: 10.1021/jp409598s

    97. [97]

      Yuan, W.; Yuan, J.; Xie, J.; Li, C. M. ACS Appl. Mater. Inter. 2016, 8, 6082. doi: 10.1021/acsami.6b00030

    98. [98]

      Deng, J.; Lv, X.; Liu, J.; Zhang, H.; Nie, K.; Hong, C.; Wang, J.; Sun, X.; Zhong, J.; Lee, S. T. ACS Nano 2015, 9, 5348. doi: 10.1021/acsnano.5b01028

    99. [99]

      Sivula, K.; Formal, F. L.; Gratzel, M. Chem. Mater. 2009, 21, 2862. doi: 10.1021/cm900565a

    100. [100]

      Chen, L.; Yang, J.; Klaus, S.; Lee, L. J.; Woods-Robinson, R.; Ma, J.; Lum, Y.; Cooper, J. K.; Toma, F. M.; Wang, L.W.; Sharp, I. D.; Bell, A. T.; Ager, J.W. J. Am. Chem. Soc. 2015, 137, 9595. doi: 10.1021/jacs.5b03536

  • 加载中
计量
  • PDF下载量:  33
  • 文章访问数:  2314
  • HTML全文浏览量:  203
文章相关
  • 收稿日期:  2016-05-30
  • 修回日期:  2016-07-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章