Citation: YANG Ze, ZHANG Wang, SHEN Yue, YUAN Li-Xia, HUANG Yun-Hui. Next-Generation Energy Storage Technologies and Their Key Electrode Materials[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1062-1071. doi: 10.3866/PKU.WHXB201603231
-
In response to energy shortages and environmental concerns, global energy consumption is transitioning from a reliance on fossil fuels to multiple, clean and efficient power sources. Energy storage is central to the development of electric vehicles and smart grids, and hence to the emerging nationally strategic industries. Today, lithium-ion batteries (LIBs) are among the most widely used energy storage devices in daily life, but they face a severe challenge to meet the rigorous requirements of energy/power density, cycle life and cost for electric vehicles and smart grids. The search for next-generation energy storage technologies with large energy density, long cycle life, high safety and low cost is vital in the post-LIB era. Consequently, lithium-sulfur and lithium-air batteries with high energy density, and safe, low-cost room-temperature sodium-ion batteries, have attracted increasing interest. In this article, we briefly summarize recent progress in next-generation rechargeable batteries and their key electrode materials, with a particular focus on Li-S, Li-air, and Na-ion batteries. The prospects for the future development of these new energy storage technologies are also discussed.
-
-
[1]
(1) Yu, H.; Zhou, H. J. Phys. Chem. Lett. 2013, 4, 1268. doi: 10.1021/jz400032v
-
[2]
(2) Manthiram, A.; Chemelewski, K.; Lee, E. S. Energ Environ. Sci. 2014, 7, 1339. doi: 10.1039/c3ee42981d
-
[3]
(3) Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nat. Mater. 2012, 11, 942. doi: 10.1038/nmat3435
-
[4]
(4) McDowell, M. T.; Lee, S.W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966. doi: 10.1002/adma.201301795
-
[5]
(5) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.
-
[6]
(6) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v
-
[7]
(7) Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/cr500232y
-
[8]
(8) Yao, Z. D.; Wei, W.; Wang, J. L.; Yang, J.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.] doi: 10.3866/PKU.WHXB20110345
-
[9]
(9) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460
-
[10]
(10) Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41. doi: 10.1016/j.carbon.2015.03.008
-
[11]
(11) Li, W. Y.; Zheng, G. Y.; Yang, Y.; Seh, Z.W.; Liu, N.; Cui, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 7148. doi: 10.1073/pnas.1220992110
-
[12]
(12) Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. Nat. Commun. 2013, 4, 2985. doi: 10.1038/ncomms3985
-
[13]
(13) Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. Nat. Commun. 2015, 6, 5682. doi: 10.1038/ncomms6682
-
[14]
(14) Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Nat. Commun. 2014, 5, 4759. doi: 10.1038/ncomms5759
-
[15]
(15) Tao, X.; Wang, J.; Ying, Z.; Cai, Q.; Zheng, G.; Gan, Y.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W.; Cui, Y. Nano Lett. 2014, 14, 5288. doi: 10.1021/nl502331f
-
[16]
(16) Zhou, J.; Li, R.; Fan, X.; Chen, Y.; Han, R.; Li, W.; Zheng, J.; Wang, B.; Li, X. Energ. Environ. Sci. 2014, 7, 2715. doi: 10.1039/C4EE01382D
-
[17]
(17) Liang, X.; Garsuch, A.; Nazar, L. F. Angew. Chem. Int. Edit. 2015, 54, 3907. doi: 10.1002/anie.201410174
-
[18]
(18) Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132. doi: 10.1021/jp207714c
-
[19]
(19) Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 18510. doi: 10.1021/ja308170k
-
[20]
(20) Li, Z.; Yuan, L.; Yi, Z.; Sun, Y.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.; Huang, Y. Adv. Energy Mater. 2013, 4, 1301473. doi: 10.1002/aenm.201301473
-
[21]
(21) Wang, J.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569. doi: 10.1002/adma.v27.3
-
[22]
(22) Gao, J.; Abruña, H. D. J. Phys. Chem. Lett. 2014, 5, 882. doi: 10.1021/jz5001819
-
[23]
(23) Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Energ Environ. Sci. 2014, 7, 1555. doi: 10.1039/c3ee43870h
-
[24]
(24) Imanishi, N.; Luntz, A. C.; Bruce, P. The Lithium Air Battery-Fundamentals; Springer: New York, 2014; pp 94-101.
-
[25]
(25) Luntz, A. C.; McCloskey, B. D. Chem. Rev. 2014, 114, 11721. doi: 10.1021/cr500054y
-
[26]
(26) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Tarascon, J. M.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Bruce, P. G. Nat. Chem. 2014, 6, 1091. doi: 10.1038/nchem.2101
-
[27]
(27) Aetukuri, N. B.; McCloskey, B. D.; Garcia, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50. doi: 10.1038/NCHEM.2132
-
[28]
(28) Khetan, A.; Luntz, A.; Viswanathan, V. J. Phys. Chem. Lett. 2015, 6, 1254. doi: 10.1021/acs.jpclett.5b00324
-
[29]
(29) Viswanathan, V.; Nørskov, J. K.; Speidel, A.; Scheffler, R.; Gowda, S.; Luntz, A. C. J. Phys. Chem. Lett. 2013, 4, 556. doi: 10.1021/jz400019y
-
[30]
(30) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. 2011, 133, 18038. doi: 10.1021/ja207229n
-
[31]
(31) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi: 10.1038/nchem.1646
-
[32]
(32) Feng, N.; He, P.; Zhou, H. ChemSusChem 2015, 8, 600. doi: 10.1002/cssc.v8.4
-
[33]
(33) Noked, M.; Schroeder, M. A.; Pearse, A. J.; Rubloff, G.W.; Lee, S. B. J. Phys. Chem. Lett. 2016, 7, 211. doi: 10.1021/acs.jpclett.5b02613
-
[34]
(34) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. doi: 10.1002/smll.v10.17
-
[35]
(35) Xia, C.; Bender, C. L.; Bergner, B.; Peppler, K.; Janek, J. Electrochem. Commun. 2013, 26, 93. doi: 10.1016/j.elecom.2012.10.020
-
[36]
(36) Li, X.; Faghri, A. J. Electrochem. Soc. 2012, 159, A1747.
-
[37]
(37) Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.
-
[38]
(38) Salkus, T.; Dindune, A.; Kanepe, Z.; Ronis, J.; Urcinskas, A.; Kezionis, A.; Orliukas, A. Solid State Ionics 2007, 178, 1282. doi: 10.1016/j.ssi.2007.07.002
-
[39]
(39) Bhargav, A.; Fu, Y. J. Electrochem. Soc. 2015, 162, A1327.
-
[40]
(40) Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. K.; Scrosati, B. Nano Lett. 2012, 12, 5775. doi: 10.1021/nl303087j
-
[41]
(41) Wang, D.; Xiao, J.; Xu, W.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A760.
-
[42]
(42) Li, X.; Huang, J.; Faghri, A. Energy 2015, 81, 489. doi: 10.1016/j.energy.2014.12.062
-
[43]
(43) Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, I.W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733. doi: 10.1021/ja4016765
-
[44]
(44) Matsui, M.; Wada, A.; Matsuda, Y.; Yamamoto, O.; Takeda, Y.; Imanishi, N. Chem. Commun. 2015, 51, 3189. doi: 10.1039/C4CC09535A
-
[45]
(45) Whittingham, M. S. Prog. Solid State Chem. 1978, 12, 41. doi: 10.1016/0079-6786(78)90003-1
-
[46]
(46) Nagelberg, A. S.; Worrell, W. L. J. Solid State Chem. 1979, 29, 345.
-
[47]
(47) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energ. Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
-
[48]
(48) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.
-
[49]
(49) Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. T.; Ikuhara, Y. C.; Chen, L. Q. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.v24.27
-
[50]
(50) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. Nat. Mater. 2012, 11, 512. doi: 10.1038/nmat3309
-
[51]
(51) Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2015, 27, 6928. doi: 10.1002/adma.201502449
-
[52]
(52) Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J.W.; Yang, H. X. Adv. Mater. 2014, 26, 6301. doi: 10.1002/adma.201401946
-
[53]
(53) Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. Energ. Environ. Sci. 2015, 8, 2019. doi: 10.1039/C5EE00695C
-
[54]
(54) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energ. Environ. Sci. 2015, 8, 81. doi: 10.1039/C4EE03192J
-
[55]
(55) Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358
-
[56]
(56) Nazri, G. A.; Pistoia, G. Lithium Batteries: Science, Technology; Kluwer Academic: Boston, 2004; pp 453-455.
-
[57]
(57) Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. J. Am. Chem. Soc. 2013, 135, 13870. doi: 10.1021/ja406016j
-
[58]
(58) Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018
-
[59]
(59) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Adv. Energ. Mater. 2012, 2, 410. doi: 10.1002/aenm.v2.4
-
[60]
(60) Lee, H.W.; Wang, R. Y.; Pasta, M.; Lee, S.W.; Liu, N.; Cui, Y. Nat. Commun. 2014, 5, 5280. doi: 10.1038/ncomms6280
-
[61]
(61) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.v21.20
-
[62]
(62) Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, 4033.
-
[63]
(63) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957
-
[64]
(64) Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2013, 25, 3045. doi: 10.1002/adma.v25.22
-
[65]
(65) Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Angew. Chem. Int. Edit. 2013, 52, 4633. doi: 10.1002/anie.201209689
-
[66]
(66) Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S. C.; Wang, C. ACS Nano 2015, 9, 3254. doi: 10.1021/acsnano.5b00376
-
[67]
(67) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e
-
[68]
(68) Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323. doi: 10.1039/C3EE42944J
-
[69]
(69) Sun, J.; Lee, H.W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 980. doi: 10.1038/nnano.2015.194
-
[70]
(70) Wang, S.W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. Angew. Chem. Int. Edit. 2014, 53, 5892. doi: 10.1002/anie.201400032
-
[71]
(71) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336
-
[72]
(72) Luo, W.; Allen, M.; Raju, V.; Ji, X. Adv. Energ. Mater. 2014, 4, 1400554. doi: 10.1002/aenm.201400554
-
[73]
(73) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.; Lu, X. H.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v
-
[74]
(74) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
-
[1]
-
-
[1]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[2]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[3]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[4]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[9]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[10]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[11]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[12]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[13]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[17]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[18]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[19]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[20]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(900)
- HTML views(16)