Citation: YANG Ze, ZHANG Wang, SHEN Yue, YUAN Li-Xia, HUANG Yun-Hui. Next-Generation Energy Storage Technologies and Their Key Electrode Materials[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1062-1071. doi: 10.3866/PKU.WHXB201603231 shu

Next-Generation Energy Storage Technologies and Their Key Electrode Materials

  • Corresponding author: HUANG Yun-Hui, 
  • Received Date: 15 February 2016
    Available Online: 21 March 2016

    Fund Project: 国家自然科学基金(21273087,20803042)资助项目 (21273087,20803042)

  • In response to energy shortages and environmental concerns, global energy consumption is transitioning from a reliance on fossil fuels to multiple, clean and efficient power sources. Energy storage is central to the development of electric vehicles and smart grids, and hence to the emerging nationally strategic industries. Today, lithium-ion batteries (LIBs) are among the most widely used energy storage devices in daily life, but they face a severe challenge to meet the rigorous requirements of energy/power density, cycle life and cost for electric vehicles and smart grids. The search for next-generation energy storage technologies with large energy density, long cycle life, high safety and low cost is vital in the post-LIB era. Consequently, lithium-sulfur and lithium-air batteries with high energy density, and safe, low-cost room-temperature sodium-ion batteries, have attracted increasing interest. In this article, we briefly summarize recent progress in next-generation rechargeable batteries and their key electrode materials, with a particular focus on Li-S, Li-air, and Na-ion batteries. The prospects for the future development of these new energy storage technologies are also discussed.
  • 加载中
    1. [1]

      (1) Yu, H.; Zhou, H. J. Phys. Chem. Lett. 2013, 4, 1268. doi: 10.1021/jz400032v

    2. [2]

      (2) Manthiram, A.; Chemelewski, K.; Lee, E. S. Energ Environ. Sci. 2014, 7, 1339. doi: 10.1039/c3ee42981d

    3. [3]

      (3) Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nat. Mater. 2012, 11, 942. doi: 10.1038/nmat3435

    4. [4]

      (4) McDowell, M. T.; Lee, S.W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966. doi: 10.1002/adma.201301795

    5. [5]

      (5) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.

    6. [6]

      (6) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v

    7. [7]

      (7) Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/cr500232y

    8. [8]

      (8) Yao, Z. D.; Wei, W.; Wang, J. L.; Yang, J.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.] doi: 10.3866/PKU.WHXB20110345

    9. [9]

      (9) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460

    10. [10]

      (10) Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41. doi: 10.1016/j.carbon.2015.03.008

    11. [11]

      (11) Li, W. Y.; Zheng, G. Y.; Yang, Y.; Seh, Z.W.; Liu, N.; Cui, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 7148. doi: 10.1073/pnas.1220992110

    12. [12]

      (12) Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. Nat. Commun. 2013, 4, 2985. doi: 10.1038/ncomms3985

    13. [13]

      (13) Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. Nat. Commun. 2015, 6, 5682. doi: 10.1038/ncomms6682

    14. [14]

      (14) Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Nat. Commun. 2014, 5, 4759. doi: 10.1038/ncomms5759

    15. [15]

      (15) Tao, X.; Wang, J.; Ying, Z.; Cai, Q.; Zheng, G.; Gan, Y.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W.; Cui, Y. Nano Lett. 2014, 14, 5288. doi: 10.1021/nl502331f

    16. [16]

      (16) Zhou, J.; Li, R.; Fan, X.; Chen, Y.; Han, R.; Li, W.; Zheng, J.; Wang, B.; Li, X. Energ. Environ. Sci. 2014, 7, 2715. doi: 10.1039/C4EE01382D

    17. [17]

      (17) Liang, X.; Garsuch, A.; Nazar, L. F. Angew. Chem. Int. Edit. 2015, 54, 3907. doi: 10.1002/anie.201410174

    18. [18]

      (18) Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132. doi: 10.1021/jp207714c

    19. [19]

      (19) Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 18510. doi: 10.1021/ja308170k

    20. [20]

      (20) Li, Z.; Yuan, L.; Yi, Z.; Sun, Y.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.; Huang, Y. Adv. Energy Mater. 2013, 4, 1301473. doi: 10.1002/aenm.201301473

    21. [21]

      (21) Wang, J.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569. doi: 10.1002/adma.v27.3

    22. [22]

      (22) Gao, J.; Abruña, H. D. J. Phys. Chem. Lett. 2014, 5, 882. doi: 10.1021/jz5001819

    23. [23]

      (23) Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Energ Environ. Sci. 2014, 7, 1555. doi: 10.1039/c3ee43870h

    24. [24]

      (24) Imanishi, N.; Luntz, A. C.; Bruce, P. The Lithium Air Battery-Fundamentals; Springer: New York, 2014; pp 94-101.

    25. [25]

      (25) Luntz, A. C.; McCloskey, B. D. Chem. Rev. 2014, 114, 11721. doi: 10.1021/cr500054y

    26. [26]

      (26) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Tarascon, J. M.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Bruce, P. G. Nat. Chem. 2014, 6, 1091. doi: 10.1038/nchem.2101

    27. [27]

      (27) Aetukuri, N. B.; McCloskey, B. D.; Garcia, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50. doi: 10.1038/NCHEM.2132

    28. [28]

      (28) Khetan, A.; Luntz, A.; Viswanathan, V. J. Phys. Chem. Lett. 2015, 6, 1254. doi: 10.1021/acs.jpclett.5b00324

    29. [29]

      (29) Viswanathan, V.; Nørskov, J. K.; Speidel, A.; Scheffler, R.; Gowda, S.; Luntz, A. C. J. Phys. Chem. Lett. 2013, 4, 556. doi: 10.1021/jz400019y

    30. [30]

      (30) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. 2011, 133, 18038. doi: 10.1021/ja207229n

    31. [31]

      (31) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi: 10.1038/nchem.1646

    32. [32]

      (32) Feng, N.; He, P.; Zhou, H. ChemSusChem 2015, 8, 600. doi: 10.1002/cssc.v8.4

    33. [33]

      (33) Noked, M.; Schroeder, M. A.; Pearse, A. J.; Rubloff, G.W.; Lee, S. B. J. Phys. Chem. Lett. 2016, 7, 211. doi: 10.1021/acs.jpclett.5b02613

    34. [34]

      (34) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. doi: 10.1002/smll.v10.17

    35. [35]

      (35) Xia, C.; Bender, C. L.; Bergner, B.; Peppler, K.; Janek, J. Electrochem. Commun. 2013, 26, 93. doi: 10.1016/j.elecom.2012.10.020

    36. [36]

      (36) Li, X.; Faghri, A. J. Electrochem. Soc. 2012, 159, A1747.

    37. [37]

      (37) Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.

    38. [38]

      (38) Salkus, T.; Dindune, A.; Kanepe, Z.; Ronis, J.; Urcinskas, A.; Kezionis, A.; Orliukas, A. Solid State Ionics 2007, 178, 1282. doi: 10.1016/j.ssi.2007.07.002

    39. [39]

      (39) Bhargav, A.; Fu, Y. J. Electrochem. Soc. 2015, 162, A1327.

    40. [40]

      (40) Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. K.; Scrosati, B. Nano Lett. 2012, 12, 5775. doi: 10.1021/nl303087j

    41. [41]

      (41) Wang, D.; Xiao, J.; Xu, W.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A760.

    42. [42]

      (42) Li, X.; Huang, J.; Faghri, A. Energy 2015, 81, 489. doi: 10.1016/j.energy.2014.12.062

    43. [43]

      (43) Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, I.W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733. doi: 10.1021/ja4016765

    44. [44]

      (44) Matsui, M.; Wada, A.; Matsuda, Y.; Yamamoto, O.; Takeda, Y.; Imanishi, N. Chem. Commun. 2015, 51, 3189. doi: 10.1039/C4CC09535A

    45. [45]

      (45) Whittingham, M. S. Prog. Solid State Chem. 1978, 12, 41. doi: 10.1016/0079-6786(78)90003-1

    46. [46]

      (46) Nagelberg, A. S.; Worrell, W. L. J. Solid State Chem. 1979, 29, 345.

    47. [47]

      (47) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energ. Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j

    48. [48]

      (48) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.

    49. [49]

      (49) Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. T.; Ikuhara, Y. C.; Chen, L. Q. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.v24.27

    50. [50]

      (50) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. Nat. Mater. 2012, 11, 512. doi: 10.1038/nmat3309

    51. [51]

      (51) Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2015, 27, 6928. doi: 10.1002/adma.201502449

    52. [52]

      (52) Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J.W.; Yang, H. X. Adv. Mater. 2014, 26, 6301. doi: 10.1002/adma.201401946

    53. [53]

      (53) Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. Energ. Environ. Sci. 2015, 8, 2019. doi: 10.1039/C5EE00695C

    54. [54]

      (54) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energ. Environ. Sci. 2015, 8, 81. doi: 10.1039/C4EE03192J

    55. [55]

      (55) Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358

    56. [56]

      (56) Nazri, G. A.; Pistoia, G. Lithium Batteries: Science, Technology; Kluwer Academic: Boston, 2004; pp 453-455.

    57. [57]

      (57) Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. J. Am. Chem. Soc. 2013, 135, 13870. doi: 10.1021/ja406016j

    58. [58]

      (58) Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018

    59. [59]

      (59) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Adv. Energ. Mater. 2012, 2, 410. doi: 10.1002/aenm.v2.4

    60. [60]

      (60) Lee, H.W.; Wang, R. Y.; Pasta, M.; Lee, S.W.; Liu, N.; Cui, Y. Nat. Commun. 2014, 5, 5280. doi: 10.1038/ncomms6280

    61. [61]

      (61) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.v21.20

    62. [62]

      (62) Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, 4033.

    63. [63]

      (63) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957

    64. [64]

      (64) Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2013, 25, 3045. doi: 10.1002/adma.v25.22

    65. [65]

      (65) Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Angew. Chem. Int. Edit. 2013, 52, 4633. doi: 10.1002/anie.201209689

    66. [66]

      (66) Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S. C.; Wang, C. ACS Nano 2015, 9, 3254. doi: 10.1021/acsnano.5b00376

    67. [67]

      (67) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e

    68. [68]

      (68) Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323. doi: 10.1039/C3EE42944J

    69. [69]

      (69) Sun, J.; Lee, H.W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 980. doi: 10.1038/nnano.2015.194

    70. [70]

      (70) Wang, S.W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. Angew. Chem. Int. Edit. 2014, 53, 5892. doi: 10.1002/anie.201400032

    71. [71]

      (71) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336

    72. [72]

      (72) Luo, W.; Allen, M.; Raju, V.; Ji, X. Adv. Energ. Mater. 2014, 4, 1400554. doi: 10.1002/aenm.201400554

    73. [73]

      (73) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.; Lu, X. H.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v

    74. [74]

      (74) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    10. [10]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    11. [11]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(2)
  • Abstract views(900)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return