Citation:
YANG Ze, ZHANG Wang, SHEN Yue, YUAN Li-Xia, HUANG Yun-Hui. Next-Generation Energy Storage Technologies and Their Key Electrode Materials[J]. Acta Physico-Chimica Sinica,
;2016, 32(5): 1062-1071.
doi:
10.3866/PKU.WHXB201603231
-
In response to energy shortages and environmental concerns, global energy consumption is transitioning from a reliance on fossil fuels to multiple, clean and efficient power sources. Energy storage is central to the development of electric vehicles and smart grids, and hence to the emerging nationally strategic industries. Today, lithium-ion batteries (LIBs) are among the most widely used energy storage devices in daily life, but they face a severe challenge to meet the rigorous requirements of energy/power density, cycle life and cost for electric vehicles and smart grids. The search for next-generation energy storage technologies with large energy density, long cycle life, high safety and low cost is vital in the post-LIB era. Consequently, lithium-sulfur and lithium-air batteries with high energy density, and safe, low-cost room-temperature sodium-ion batteries, have attracted increasing interest. In this article, we briefly summarize recent progress in next-generation rechargeable batteries and their key electrode materials, with a particular focus on Li-S, Li-air, and Na-ion batteries. The prospects for the future development of these new energy storage technologies are also discussed.
-
-
-
[1]
(1) Yu, H.; Zhou, H. J. Phys. Chem. Lett. 2013, 4, 1268. doi: 10.1021/jz400032v
-
[2]
(2) Manthiram, A.; Chemelewski, K.; Lee, E. S. Energ Environ. Sci. 2014, 7, 1339. doi: 10.1039/c3ee42981d
-
[3]
(3) Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nat. Mater. 2012, 11, 942. doi: 10.1038/nmat3435
-
[4]
(4) McDowell, M. T.; Lee, S.W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966. doi: 10.1002/adma.201301795
-
[5]
(5) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.
-
[6]
(6) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v
-
[7]
(7) Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/cr500232y
-
[8]
(8) Yao, Z. D.; Wei, W.; Wang, J. L.; Yang, J.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.] doi: 10.3866/PKU.WHXB20110345
-
[9]
(9) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460
-
[10]
(10) Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41. doi: 10.1016/j.carbon.2015.03.008
-
[11]
(11) Li, W. Y.; Zheng, G. Y.; Yang, Y.; Seh, Z.W.; Liu, N.; Cui, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 7148. doi: 10.1073/pnas.1220992110
-
[12]
(12) Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. Nat. Commun. 2013, 4, 2985. doi: 10.1038/ncomms3985
-
[13]
(13) Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. Nat. Commun. 2015, 6, 5682. doi: 10.1038/ncomms6682
-
[14]
(14) Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Nat. Commun. 2014, 5, 4759. doi: 10.1038/ncomms5759
-
[15]
(15) Tao, X.; Wang, J.; Ying, Z.; Cai, Q.; Zheng, G.; Gan, Y.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W.; Cui, Y. Nano Lett. 2014, 14, 5288. doi: 10.1021/nl502331f
-
[16]
(16) Zhou, J.; Li, R.; Fan, X.; Chen, Y.; Han, R.; Li, W.; Zheng, J.; Wang, B.; Li, X. Energ. Environ. Sci. 2014, 7, 2715. doi: 10.1039/C4EE01382D
-
[17]
(17) Liang, X.; Garsuch, A.; Nazar, L. F. Angew. Chem. Int. Edit. 2015, 54, 3907. doi: 10.1002/anie.201410174
-
[18]
(18) Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132. doi: 10.1021/jp207714c
-
[19]
(19) Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 18510. doi: 10.1021/ja308170k
-
[20]
(20) Li, Z.; Yuan, L.; Yi, Z.; Sun, Y.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.; Huang, Y. Adv. Energy Mater. 2013, 4, 1301473. doi: 10.1002/aenm.201301473
-
[21]
(21) Wang, J.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569. doi: 10.1002/adma.v27.3
-
[22]
(22) Gao, J.; Abruña, H. D. J. Phys. Chem. Lett. 2014, 5, 882. doi: 10.1021/jz5001819
-
[23]
(23) Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Energ Environ. Sci. 2014, 7, 1555. doi: 10.1039/c3ee43870h
-
[24]
(24) Imanishi, N.; Luntz, A. C.; Bruce, P. The Lithium Air Battery-Fundamentals; Springer: New York, 2014; pp 94-101.
-
[25]
(25) Luntz, A. C.; McCloskey, B. D. Chem. Rev. 2014, 114, 11721. doi: 10.1021/cr500054y
-
[26]
(26) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Tarascon, J. M.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Bruce, P. G. Nat. Chem. 2014, 6, 1091. doi: 10.1038/nchem.2101
-
[27]
(27) Aetukuri, N. B.; McCloskey, B. D.; Garcia, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50. doi: 10.1038/NCHEM.2132
-
[28]
(28) Khetan, A.; Luntz, A.; Viswanathan, V. J. Phys. Chem. Lett. 2015, 6, 1254. doi: 10.1021/acs.jpclett.5b00324
-
[29]
(29) Viswanathan, V.; Nørskov, J. K.; Speidel, A.; Scheffler, R.; Gowda, S.; Luntz, A. C. J. Phys. Chem. Lett. 2013, 4, 556. doi: 10.1021/jz400019y
-
[30]
(30) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. 2011, 133, 18038. doi: 10.1021/ja207229n
-
[31]
(31) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi: 10.1038/nchem.1646
-
[32]
(32) Feng, N.; He, P.; Zhou, H. ChemSusChem 2015, 8, 600. doi: 10.1002/cssc.v8.4
-
[33]
(33) Noked, M.; Schroeder, M. A.; Pearse, A. J.; Rubloff, G.W.; Lee, S. B. J. Phys. Chem. Lett. 2016, 7, 211. doi: 10.1021/acs.jpclett.5b02613
-
[34]
(34) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. doi: 10.1002/smll.v10.17
-
[35]
(35) Xia, C.; Bender, C. L.; Bergner, B.; Peppler, K.; Janek, J. Electrochem. Commun. 2013, 26, 93. doi: 10.1016/j.elecom.2012.10.020
-
[36]
(36) Li, X.; Faghri, A. J. Electrochem. Soc. 2012, 159, A1747.
-
[37]
(37) Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.
-
[38]
(38) Salkus, T.; Dindune, A.; Kanepe, Z.; Ronis, J.; Urcinskas, A.; Kezionis, A.; Orliukas, A. Solid State Ionics 2007, 178, 1282. doi: 10.1016/j.ssi.2007.07.002
-
[39]
(39) Bhargav, A.; Fu, Y. J. Electrochem. Soc. 2015, 162, A1327.
-
[40]
(40) Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. K.; Scrosati, B. Nano Lett. 2012, 12, 5775. doi: 10.1021/nl303087j
-
[41]
(41) Wang, D.; Xiao, J.; Xu, W.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A760.
-
[42]
(42) Li, X.; Huang, J.; Faghri, A. Energy 2015, 81, 489. doi: 10.1016/j.energy.2014.12.062
-
[43]
(43) Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, I.W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733. doi: 10.1021/ja4016765
-
[44]
(44) Matsui, M.; Wada, A.; Matsuda, Y.; Yamamoto, O.; Takeda, Y.; Imanishi, N. Chem. Commun. 2015, 51, 3189. doi: 10.1039/C4CC09535A
-
[45]
(45) Whittingham, M. S. Prog. Solid State Chem. 1978, 12, 41. doi: 10.1016/0079-6786(78)90003-1
-
[46]
(46) Nagelberg, A. S.; Worrell, W. L. J. Solid State Chem. 1979, 29, 345.
-
[47]
(47) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energ. Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
-
[48]
(48) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.
-
[49]
(49) Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. T.; Ikuhara, Y. C.; Chen, L. Q. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.v24.27
-
[50]
(50) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. Nat. Mater. 2012, 11, 512. doi: 10.1038/nmat3309
-
[51]
(51) Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2015, 27, 6928. doi: 10.1002/adma.201502449
-
[52]
(52) Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J.W.; Yang, H. X. Adv. Mater. 2014, 26, 6301. doi: 10.1002/adma.201401946
-
[53]
(53) Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. Energ. Environ. Sci. 2015, 8, 2019. doi: 10.1039/C5EE00695C
-
[54]
(54) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energ. Environ. Sci. 2015, 8, 81. doi: 10.1039/C4EE03192J
-
[55]
(55) Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358
-
[56]
(56) Nazri, G. A.; Pistoia, G. Lithium Batteries: Science, Technology; Kluwer Academic: Boston, 2004; pp 453-455.
-
[57]
(57) Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. J. Am. Chem. Soc. 2013, 135, 13870. doi: 10.1021/ja406016j
-
[58]
(58) Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018
-
[59]
(59) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Adv. Energ. Mater. 2012, 2, 410. doi: 10.1002/aenm.v2.4
-
[60]
(60) Lee, H.W.; Wang, R. Y.; Pasta, M.; Lee, S.W.; Liu, N.; Cui, Y. Nat. Commun. 2014, 5, 5280. doi: 10.1038/ncomms6280
-
[61]
(61) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.v21.20
-
[62]
(62) Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, 4033.
-
[63]
(63) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957
-
[64]
(64) Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2013, 25, 3045. doi: 10.1002/adma.v25.22
-
[65]
(65) Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Angew. Chem. Int. Edit. 2013, 52, 4633. doi: 10.1002/anie.201209689
-
[66]
(66) Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S. C.; Wang, C. ACS Nano 2015, 9, 3254. doi: 10.1021/acsnano.5b00376
-
[67]
(67) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e
-
[68]
(68) Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323. doi: 10.1039/C3EE42944J
-
[69]
(69) Sun, J.; Lee, H.W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 980. doi: 10.1038/nnano.2015.194
-
[70]
(70) Wang, S.W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. Angew. Chem. Int. Edit. 2014, 53, 5892. doi: 10.1002/anie.201400032
-
[71]
(71) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336
-
[72]
(72) Luo, W.; Allen, M.; Raju, V.; Ji, X. Adv. Energ. Mater. 2014, 4, 1400554. doi: 10.1002/aenm.201400554
-
[73]
(73) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.; Lu, X. H.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v
-
[74]
(74) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
-
[1]
-
-
-
[1]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[2]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[3]
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082
-
[4]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[5]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[6]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[7]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[8]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[9]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[10]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[11]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[12]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[13]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[14]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[15]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[16]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[17]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[18]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[19]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[20]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(1133)
- HTML views(22)