Citation: YANG Zu-Guang, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1056-1061. doi: 10.3866/PKU.WHXB201603092
-
In order to ameliorate the severe capacity fading of LiNi0.5Co0.2Mn0.3O2 cathode materials at elevated temperatures, a Zr-doping strategy was performed via a solid-state method, and the influence of the doping content on the structural and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 was studied. The results indicate that the Li+/Ni2+ cation mixing can be reduced and the electrochemical performance, especially the hightemperature cycling performance, can be improved when the doping content of zirconium is 0.01. After 95 cycles, the capacity retention of Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 is 92.13% at 1C between 3.0 and 4.3 V, which is higher than that of the LiNi0.5Co0.2Mn0.3O2 (87.61%). When cycling at 55 ℃, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 exhibits a capacity retention of 82.96% after 115 cycles at 1C, while that of the bare sample remains at only 67.63%. Therefore, a small amount of zirconium doping is notably beneficial to the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 at elevated temperatures.
-
-
[1]
(1) Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Energy Environ. Sci. 2012, 5, 7854. doi: 10.1039/c2ee21892e
-
[2]
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
-
[3]
(3) Stanley, M.; Whittingham. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c
-
[4]
(4) Wu, K. C.; Wang, F.; Gao, L. L.; Li, R. M.; Xiao, L. L.; Zhao, L. T.; Hu, J. S.; Wang, X. J.; Xu, Z. L.; Wu, Q. G. Electrochim. Acta 2012, 75, 393. doi: 10.1016/j.electacta.2012.05.035
-
[5]
(5) Yang, S. Y.; Wang, X. Y.; Yang, K. X.; Bai, Y. S.; Liu, Z. L.; Shu, H. B.; Wei, Q. L. Electrochim. Acta 2012, 66, 88. doi: 10.1016/j.electacta.2012.01.061
-
[6]
(6) Noh, M.; Cho, J. J. Electrochem. Soc. 2013, 160, A105. doi: 10.1149/2.004302jes
-
[7]
(7) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Edit. 2015, 54, 4440. doi: 10.1002/anie.201409262
-
[8]
(8) Arorat, P.; White, R. E.; Doyle, M. J. Electrochem. Soc. 1998, 145, 3647. doi: 10.1149/1.1838857
-
[9]
(9) Aurbach, D. J. Power Sources 2003, 119, 497. doi: 10.1016/S0378-7753(03)00273-8
-
[10]
(10) Wu, Z. Z.; Han, X. G.; Zheng, J. X.; Wei, Y.; Qiao, R.; Shen, F.; Dai, J. Q.; Hu, L. B.; Xu, K.; Lin, Y.; Yang, W. L.; Pan, F. Nano Lett. 2014, 14, 4700. doi: 10.1021/nl5018139
-
[11]
(11) Hua, W. B.; Zhang, J. B.; Zheng, Z.; Liu, W. Y.; Peng, X.H.; Guo, X. D.; Zhong, B. H.; Wang, Y. J.; Wang, X. L. Dalton Trans. 2014, 43, 14824. doi: 10.1039/C4DT01611D
-
[12]
(12) Aurbach, D.; Lavi, O. S.; Ghanty C.; Dixit, M.; Haik, O.; Talianker, M.; Grinblat, Y.; Leifer, N.; Lavi, R. J. Electrochem. Soc. 2015, 162, A1014. doi: 10.1149/2.0681506jes
-
[13]
(13) Zhang, Y.; Wang, Z. B.; Lei, J.; Li, F. F.; Wu, J.; Zhang, X. G. Ceramics International 2015, 41, 9069. doi: 10.1016/j.ceramint.2015.03.280
-
[14]
(14) Zhu, H. L.; Xie, T.; Chen, Z.Y.; Li, L. J.; Xu, M.; Wang, W. H. Electrochim. Acta 2014, 135, 77. doi: 10.1016/j.electacta.2014.04.183
-
[15]
(15) Wang, D.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Xu, Y.; Fan, Y. L.; Ru, J. J. Electrochim. Acta 2016, 188, 48. doi: 10.1016/j.electacta.2015.11.093
-
[16]
(16) Xia, L.; Qiu, K. H.; Gao, Y. Y.; He, X.; Zhou, F. D. J. Mater. Sci. 2015, 50, 2914. doi: 10.1007/s10853-015-8856-9
-
[17]
(17) Kim, S. H.; Kim, C. S. J. Electroceram. 2009, 23, 254. doi: 10.1007/s10832-008-9414-5
-
[18]
(18) Ding, C. X.; Bai, Y. C.; Feng, X. Y.; Chen, C. H. Solid State Ionics 2011, 189, 69. doi: 10.1016/j.ssi.2011.02.015
-
[19]
(19) Lin, B.; Wen, Z.Y.; Gu, Z. H.; Xu, X. X. J. Power Sources 2007, 174, 544. doi: 10.1016/j.jpowsour.2007.06.125
-
[20]
(20) He, Z. J.; Wang, Z. X.; Chen, H.; Huang, Z. M.; Li, X. H.; Guo, H. J.; Wang, R. H. J. Power Sources 2015, 299, 334. doi: 10.1016/j.jpowsour.2015.09.025
-
[21]
(21) Hua, W. B.; Zheng, Z.; Li, L.Y.; Guo, X. D.; Liu, H.; Shen, C. H.; Wu, Z. G.; Zhong, B. H.; Huang, L. Acta Phys. -Chim. Sin. 2014, 30, 1481. [滑纬博, 郑卓, 李龙燕, 郭孝东, 刘恒, 沈重亨, 吴振国, 钟本和, 黄令. 物理化学学报, 2014, 30, 1481.] doi: 10.3866/PKU.WHXB201405303
-
[22]
(22) Li, J. B.; Xu, Y. L.; Du, X. F.; Sun, X. F.; Xiong, L. L. Acta Phys. -Chim. Sin. 2012, 28, 1899. [李节宾, 徐友龙, 杜显锋, 孙孝飞, 熊礼龙. 物理化学学报, 2012, 28, 1899.] doi: 10.3866/PKU.WHXB201205152
-
[23]
(23) Zhang, X. Y.; Jiang, W. J.; Mauger, A.; Gendron, F.; Julien, C. M. J. Power Sources 2010, 195, 1292. doi: 10.1016/j.jpowsour.2009.09.029
-
[24]
(24) Wu, Y. P.; Rahm, E.; Holze, R. Electrochim. Acta 2002, 47, 3491. doi: 10.1016/S0013-4686(02)00317-1
-
[25]
(25) Cho, Y. H.; Oh, P.; Cho, J. Nano Lett. 2013, 13, 1145. doi: 10.1021/nl304558t
-
[26]
(26) Wang, M.; Chen, Y. B.; Wu, F.; Su, Y. F.; Chen, L. Sci. China Tech. Sci. 2010, 53, 3214. doi: 10.1007/s11431-010-4155-5
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[3]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[4]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[5]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[6]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[12]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[13]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[14]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[15]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[16]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[17]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[18]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[1]
Metrics
- PDF Downloads(9)
- Abstract views(697)
- HTML views(47)