Citation:
FARMANZADEH Davood, REZAINEJAD Hamid. DFT Study of Adsorption of Diazinon, Hinosan, Chlorpyrifos and Parathion Pesticides on the Surface of B36N36 Nanocage and Its Fe Doped Derivatives as New Adsorbents[J]. Acta Physico-Chimica Sinica,
;2016, 32(5): 1191-1198.
doi:
10.3866/PKU.WHXB201603021
-
In this work, we used density functional theory with the Tkatchenko and Scheffler method to investigate the adsorption of diazinon, hinosan, chlorpyrifos, and parathion organophosphorus pesticides on the surface of B36N36 nanocage and its Fe doped derivatives. The assessments revealed that van der Waals interaction is a key factor in organophosphate adsorption on the surface of these nanocages as well as overlapping. The results of Fukui indices and atomic partial charges calculations indicated that these pesticides and nanocages act as nucleophile and electrophile, respectively, and the adsorption sites of all four organophosphates on these nanocages are thiophosphate groups, as well as the aromatic ring in diazinon, and the nitro group in parathion. In addition, the calculated adsorption energies yielded the best result for diazinon, and the best Fe doped B36N36 derivative for adsorbing organophosphates in aqueous solution is the one in which Fe atom is located in the boron position of the square ring of B36N36.
-
-
-
[1]
(1) Oliveira Silva, J. J.; Alves, S. R.; Meyer, A.; Perez, F.; Sarcinelli, P. N.; da Costa Mattos, R. C.; Moreira, J. C. Rev. Saude. Publica. 2001, 35 (2), 130. doi: 10.1590/S0034-89102001000200005
-
[2]
(2) Bharathi, P.; Reddy, A. G.; Reddy, A. R.; Alpharaj, M. Toxicol. Int. 2011, 18 (1), 44. doi: 10.4103/0971-6580.75854
-
[3]
(3) Kamrin, M. A. Pesticide Profiles: Toxicity, Environmental Impact, and Fate; CRC Press: Boca Raton, 1997; pp 136-137.
-
[4]
(4) Leoni, C.; Balduzzi, M.; Buratti, F. M.; Testai, E. Toxicol. Lett. 2012, 215 (1), 42. doi: 10.1016/j.toxlet.2012.09.016
-
[5]
(5) Kamel, F.; Rowland, A. S.; Park, L. P.; Anger, W. K.; Baird, D. D.; Gladen, B. C.; Moreno, T.; Stallone, L.; Sandler, D. P. Environ. Health Perspect. 2003, 111, 1765. doi: 10.1289/ehp.6341
-
[6]
(6) Fireston, J. A.; Weller, T. S.; Franklin, G. S.; Wanson, P. JAMA Neurol. 2005, 62 (1), 91. doi: 10.1001/archneur.62.1.91.
-
[7]
(7) Katzung, B. G. Basic and Clinical Pharmacology, 10th ed.; Asimon and Schuster: New York, 2005; p 948.
-
[8]
(8) Gallo, M. A.; Lawryk, N. Organic Phosphorus Pesticides. In Handbook of Pesticide Toxicology: Classes of Pesticides; Hayes, W. J., Laws J. E., Eds.; Academic Press: New York, 1991; pp 917-1123.
-
[9]
(9) Fattahi, E.; Jorsaraei, S. G. A.; Moghadamnia, A. A. J. Babol. Univ. Med. Sci. 2013, 15 (3), 42.
-
[10]
(10) Stanwood, G. D.; Levitt, P. Curr. Opin. Pharmacol. 2004, 4, 65. doi: 10.1016/j.coph.2003.09.003
-
[11]
(11) Shayeghi, M.; Dehghani, M. H.; Alimohammadi, M.; Goodini, K. J. Arthropod-Borne Dis. 2012, 6 (1), 45.
-
[12]
(12) Memon, S.; Memon, N.; Memon, S. Pak. J. Anal. Environ. Chem. 2013, 14 (2), 28.
-
[13]
(13) Mahmoodi, P.; Farhadian, M.; Solaimany Nazar, A. R.; Noroozi, A. J. Appl. Res. Water and Wastewater 2014, 1, 18.
-
[14]
(14) Ponyadira, K.; Naoto, M.; Erni, J.; Teruo, H. Am. J. Anal. Chem. 2014, 5, 70. doi: 10.4236/ajac.2014.52011
-
[15]
(15) Bazrafshan, E.; Mahvi, A. H.; Nasseri, S.; Shaieghi, M. Iran. J. Environ. Health. Sci. Eng. 2007, 4 (2), 127.
-
[16]
(16) Wang, R.; Zhang, D.; Zhu, R.; Liu, C. J. Mol. Model. 2014, 20, 2093. doi: 10.1007/s00894-014-2093-z
-
[17]
(17) Golberg, D.; Bando, Y.; Stephan, O.; Kurashima, K. Appl. Phys. Lett. 1998, 73 (17), 2441. doi: 10.1063/1.122475
-
[18]
(18) Oku, T. Energies 2015, 8, 319. doi: 10.3390/en8010319
-
[19]
(19) Batista, R. J. C.; Mazzoni, M. S. C.; Chacham, H. Phys. Rev. B 2007, 75, 035417. doi: 10.1103/PhysRevB.75.035417
-
[20]
(20) Oliaey, A. R.; Boshra, A. Physica E 2013, 52, 136. doi: 10.1016/j.physe.2013.03.011
-
[21]
(21) Zope, R. R.; Baruah, T.; Pederson, M. R.; Dunlap, B. I. Phys. Rev. A 2005, 71, 025201. doi: 10.1103/PhysRevA.71.025201
-
[22]
(22) Wang, Q.; Sun, Q.; Oku, T.; Kawazoe, Y. Physica B 2003, 339, 105. doi: 10.1016/j.physb .2003.08.119
-
[23]
(23) Wu, H. S.; Xu, X. H.; Strout, D. L.; Jiao, H. J. Mol. Model. 2005, 12, 1. doi: 10.1007/s00894-005-0275-4
-
[24]
(24) Alexandre, S. S.; Mazzoni, M. S. C.; Chacham, H. Appl. Phys. Lett. 1999, 75 (1), 61. doi: 10.1063/1.124277View
-
[25]
(25) Farmanzadeh, D.; Ghazanfary, S. C. R. Chim. 2014, 17, 985. doi: 10.1016/j.crci.2013.11.012
-
[26]
(26) Nigam, S.; Majumder, C. ACS Nano 2008, 2, 1422. doi: 10.1021/nn8001455
-
[27]
(27) Juarez, A. R.; Anota, E. C.; Cocoletzi, H. H.; Riveros, A. F. Appl. Surf. Sci. 2013, 268, 259. doi: 10.1016/j.apsusc.2012.12.075
-
[28]
(28) Farmanzadeh, D.; Rezainejad, H. J. Theor. Comput. Chem. 2015, 14, 1550026. doi: 10.1142/ S0219633615500261
-
[29]
(29) Wen, S. H.; Deng, W. Q.; Han, K. L. J. Phys. Chem. C 2008, 112, 12195. doi: 10.1021/jp801893f
-
[30]
(30) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
-
[31]
(31) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRev Lett.77.3865
-
[32]
(32) Klamt, A. J. Phys. Chem. 1995, 99, 2224. doi: 10.1021/j100007a062
-
[33]
(33) Tkatchenko, A.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 073005. doi: 10.1103/PhysRevLett.102.073005
-
[34]
(34) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
-
[35]
(35) Yang, W.; Mortierl, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008
-
[36]
(36) Hirshfeld, F. L. Theoret. Claim. Acta (Berl.) 1977, 44, 129. doi: 10.1007/BF00549096
-
[37]
(37) Grimme, S. J. Comput. Chem. 2006, 27 (15), 1787. doi: 10.1002/jcc.20495
-
[38]
(38) Kazemi, M.; Tahmasbi, A. M.; Valizadeh, R.; Naserian, A. A.; Soni, A. Agric. Sci. Res. J. 2012, 2 (9), 512.
-
[39]
(39) Kumar, S. V.; Fareedullah, M. D.; Sudhakar, Y.; Venkateswarlu, B.; Kumar, E. A. Arch. Appl. Sci. Res. 2010, 2 (4), 199.
-
[40]
(40) Yu, S. J. The Toxicology and Biochemistry of Insecticides; CRC Press: Boca Raton, 2008.
-
[41]
(41) Guerra, C. F.; Handgraaf, J.W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25, 189. doi: 10.1002/jcc.10351
-
[42]
(42) Farmanzadeh, D.; Rezainejad, H. Appl. Surf. Sci. 2016, 364, 862. doi: 10.1016/j.apsusc.2015.12.202
-
[1]
-
-
-
[1]
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
-
[2]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[3]
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
-
[4]
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
-
[5]
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
-
[6]
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
-
[7]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[8]
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
-
[9]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[10]
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
-
[11]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[12]
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
-
[13]
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
-
[14]
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
-
[15]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[16]
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
-
[17]
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
-
[18]
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
-
[19]
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
-
[20]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(868)
- HTML views(13)