Citation: SUN Li-Yuan, ZHANG Ya-Fei, GONG Yan-Jun. Structural Features and Application of Micro-Microporous Composite Zeolites[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1105-1122. doi: 10.3866/PKU.WHXB201603015 shu

Structural Features and Application of Micro-Microporous Composite Zeolites

  • Corresponding author: GONG Yan-Jun, 
  • Received Date: 22 December 2015
    Available Online: 29 February 2016

    Fund Project: 国家重点基础研究发展计划(2012CB215002) (2012CB215002)国家自然科学基金(21176255,21276278) (21176255,21276278)中国石油股份公司项目(2014A-2111)资助 (2014A-2111)

  • Micro-microporous composite zeolites with binary (or more) structures not only possess the advantages of the two kinds of molecular sieves, but also tailor the pore structure and acid property of the composite samples. These changes induce the formation of special properties of the composites and further present special catalytic performance, which drives many research studies. Based on synthetic methods and micro-structural features, micro-microporous composites can mainly be divided into two types: intergrowth or co-existence composite zeolites. The former has a structural rearrangement that is produced by the stacking of distinct layers and leads to the generation of a new crystal structure. The latter is formed by staggered growth and has a compound interface when two or more zeolites appeared in the same gel system. Compared with the intergrowth zeolites, the co-existence zeolites do not possess the new and perfect crystal structure. This review summarizes the development of micro-microporous composites, focusing on their synthesis and structural characteristics as well as the application of intergrowth and co-existence composite zeolites in the field of catalytic reactions.
  • 加载中
    1. [1]

      (1) Corma, A. Chem. Rev. 1995, 95, 559. doi: 10.1021/cr00035a006

    2. [2]

      (2) Davis, R. J. J. Catal. 2003, 216, 396. doi: 10.1016/S0021-9517(02)00034-9

    3. [3]

      (3) Corma, A. J. Catal. 2003, 216, 298. doi: 10.1016/S0021-9517(02)00132-X

    4. [4]

      (4) Xu, R. R.; Pang, W. Q.; Yu, J. H.; Huo, Q. S.; Chen, J. S. Zeolite Molecular Sieves and Porous Materiaals; Science Press: Beijing, 2004. [徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学. 北京: 科学出版社, 2004.]

    5. [5]

      (5) Burton, A.W.; Zones, S. I.; Rea, T.; Chan, I. Y. Microporous Mesoporous Mat. 2010, 132, 54. doi: 10.1016/j.micromeso.2009.10.023

    6. [6]

      (6) Fan, F.; Ling, F. X.; Wang, S. J.; Zhang, H. C.; Chen, X. G.; Yang, C. Y. Synthesis Method of the Composite Molecular Sieves of SAPO-34 and EU-1. CN Patent 10 459 1221.A, 2015-05-06. [范峰, 凌凤香, 王少军, 张会成, 陈晓刚, 杨春雁. 一种SAPO-34 和EU-1 复合分子筛及其合成方法: 中国, CN104591221.A[P]. 2015-05-06.]

    7. [7]

      (7) Zhang, X. F.; Xing, A. H.; Feng, Q. Y.; Shi, Y. L. Synthesis Method of the Composite Molecular Sieves of SAPO-5 and SAPO-34. CN Patent 10 482 8842.A, 2015-08-12. [张新锋, 邢爱华, 冯琦瑶, 石玉林. 一种SAPO-5 和SAPO-34 共生的复合分子筛的制备方法: 中国, CN10 482 8842.A[P]. 2015-08-12.]

    8. [8]

      (8) Deng, G. J.; Zhang, Y.; Zhao, Y.; Dong, Z. Y.; Li, Z.; Jiao, L. P.; Niu, Z. M.; Jiao, F. R.; C, L. Synthesis Method of the Composite Molecular Sieves of Hβ and HMCM-49. CN Patent 10 246 4328. A, 2012-05-23. [邓广金, 张钰, 赵胤, 董肇勇, 李正, 焦立平, 牛志蒙, 焦凤茹, 崔龙. 一种Hβ/HMCM-49 复合分子筛的制备方法: 中国, CN10 246 4328.A[P]. 2012-05-23.]

    9. [9]

      (9) Chen, H.; Shen, B.; Pan, H. Chem. Lett. 2003, 32, 726. doi: 10.1246/cl.2003.726

    10. [10]

      (10) Zhu, N.; Wang, Y.; Cheng, D. G.; Chen, F. Q.; Zhan, X. Appl. Catal., A 2009, 362, 26. doi: 10.1016/j.apcata.2009.04.013

    11. [11]

      (11) Zheng, J.; Yi, Y.; Wang, W.; Guo, K.; Ma, J.; Li, R. Microporous Mesoporous Mat. 2013, 171, 44. doi: 10.1016/j.micromeso.2012.12.041

    12. [12]

      (12) Qi, X.; Kong, D.; Yuan, X.; Xu, Z.; Wang, Y.; Zheng, J.; Xie, Z. J. Mater. Sci. 2008, 43, 5626. doi: 10.1007/s10853-008-2721-z

    13. [13]

      (13) Mihailova, B.; Valtchev, V.; Mintova, S.; Faust, A. C.; Petkov, N.; Bein, T. Phys. Chem. Chem. Phys. 2005, 7, 2756. doi: 10.1039/b503150h

    14. [14]

      (14) Terasaki, O.; Ohsuna, T. Catal. Today 1995, 23, 201. doi: 10.1016/0920-5861(94)00164-W

    15. [15]

      (15) Okubo, T.; Wakihara, T.; Plévert, J.; Nair, S.; Tsapatsis, M.; Ogawa, Y.; Komiyama, H.; Yoshimura, M.; Davis, M. E. Angew. Chem. Int. Edit. 2001, 40, 1069.

    16. [16]

      (16) Ghorbanpour, A.; Gumidyala, A.; Grabow, L. C.; Crossley, S. P.; Rimer, J. D. ACS Nano 2015, 9, 4006. doi: 10.1021/acsnano.5b01308

    17. [17]

      (17) Rao, C. N. R.; Thomas, J. M. Accounts Chem. Res. 1985, 18, 113. doi: 10.1021/ar00112a003

    18. [18]

      (18) Liu, Y.; Zhang, W.; Xie, S.; Xu, L.; Han, X.; Bao, X. J. Phys. Chem. B 2008, 112, 1226. doi: 10.1021/jp077396m

    19. [19]

      (19) Jablonski, G. A.; Sand, L. B.; Gard, J. A. Zeolites 1986, 6, 396. doi: 10.1016/0144-2449(86)90069-2

    20. [20]

      (20) Belandría, L. N.; Gonzàlez, C. S.; Aguirre, F.; Sosa, E.; Uzcátegui, A.; González, G.; Brito, J.; González-Cortés, S. L.; Imbert, F. E. J. Mol. Catal. A: Chem. 2008, 281, 164. doi: 10.1016/j.molcata.2007.09.011

    21. [21]

      (21) Zones, S. I. Zeolite SSZ-33. US Patent 4 963 337, 1990-10-16.

    22. [22]

      (22) Higgins, J. B.; LaPierre, R. B.; Schlenker, J. L.; Rohrman, A. C.; Wood, J. D.; Kerr, G. T.; Rohrbaugh, W. J. Zeolites 1988, 8, 446. doi: 10.1016/S0144-2449(88)80219-7

    23. [23]

      (23) Treacy, M. M. J.; Vaughan, D. E.W.; Strohmaier, K. G.; Newsam, J. M. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1996, 452, 813. doi: 10.1098/rspa.1996.0041

    24. [24]

      (24) Jeong, H. K.; Krohn, J.; Sujaoti, K.; Tsapatsis, M. J. Am. Chem. Soc. 2002, 124, 12966. doi: 10.1021/ja020947w

    25. [25]

      (25) González, G.; Stracke, W.; Lopez, Z.; Keller, U.; Ricker, A.; Reichelt, R. Microsc. Microanal. 2004, 10, 224.

    26. [26]

      (26) Willhammar, T.; Zou, X. Z. Kristallogr. 2013, 228, 11.

    27. [27]

      (27) Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of Zeolite Framework Types, Elsevier: Amsterdam, 2001, 178.

    28. [28]

      (28) Ohsuna, T.; Terasaki, O.; Nakagawa, Y.; Zones, S. I.; Hiraga, K. J. Phys. Chem. B 1997, 101, 9881. doi: 10.1021/jp971448y

    29. [29]

      (29) Kokotailo, G. T.; Chu, P.; Lawton, S. L.; Meier, W. M. Nature 1978, 275, 119. doi: 10.1038/275119a0

    30. [30]

      (30) Stucky, G. D.; Dwyer, F. G. Intrazeolite Chemistry, ACS Symposium Series: American Chemical Society, Washington, DC, 1983, 218, 181. doi: 10.1021/symposium

    31. [31]

      (31) Kokotailo, G. T.; Woodbury, N. J. Crystalline Zeolite Product Constituting ZSM-5/ZSM-11 Intermediates. US Patent 4 229 424, 1980-10-21.

    32. [32]

      (32) Thomas, J. M.; Millward, G. R. J. Chem. Soc., Chem. Commun. 1982, 1380.

    33. [33]

      (33) Francesconi, M. S.; López, Z. E.; Uzcátegui, D.; González, G.; Hernández, J. C.; Uzcátegui, A.; Loaiza, A.; Imbert, F. E. Catal. Today 2005, 107-108, 809.

    34. [34]

      (34) Kirschhock, C. E. A.; Ravishankar, R.; Looveren, L. V.; Jacobs, P. A.; Martens, J. A. J. Phys. Chem. B 1999, 103, 4972. doi: 10.1021/jp990298j

    35. [35]

      (35) Yu, Q.; Li, C.; Tang, X.; Yi, H. Ind. Eng. Chem. Res. 2015, 54, 2120. doi: 10.1021/ie505003g

    36. [36]

      (36) Zhang, L.; Liu, S.; Xie, S.; Xu, L. Microporous Mesoporous Mat. 2012, 147, 117. doi: 10.1016/j.micromeso.2011.05.033

    37. [37]

      (37) Wang, Q. X.; Zhang, S. R.; Cai, G. Y.; Li, F.; Xu, L. Y.; Huang, Z. X.; Li, Y. Y. Rare Earth-ZSM-5/ZSM-11 Cocrystalline Zeolite. US Patent 5 869 021, 1999-02-09.

    38. [38]

      (38) Wang, B.; Tian, Z.; Li, P.; Wang, L.; Xu, Y.; Qu, W.; Ma, H.; Xu, Z.; Lin, L. Mater. Res. Bull. 2009, 44, 2258. doi: 10.1016/j.materresbull.2009.07.017

    39. [39]

      (39) Marler, B.; Deroche, C.; Gies, H.; Fyfe, C. A.; Grondey, H.; Kokotailo, G. T.; Feng, Y.; Ernst, S.; Weitkamp, J.; Cox, D. E. J. Appl. Crystallogr. 1993, 26, 636. doi: 10.1107/S0021889893002006

    40. [40]

      (40) Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier Science: Amsterdam, 2007; p334.

    41. [41]

      (41) Zones, S.; Burton, A.W.; Zeolite SSZ-54 Composition of Matter and Synthesis Thereof. US Patent 6 676 923.B1, 2004-01-13.

    42. [42]

      (42) González, G.; González, C. S.; Stracke, W.; Reichelt, R.; García, L. Microporous Mesoporous Mat. 2007, 101, 30. doi: 10.1016/j.micromeso.2006.11.008

    43. [43]

      (43) Smith, R. L.; Sławiński, W. A.; Lind, A.; Wragg, D. S.; Cavka, J. H.; Arstad, B.; Fjellvåg, H.; Attfield, M. P.; Akporiaye, D.; Anderson, M.W. Chem. Mater. 2015, 27, 4205. doi: 10.1021/cm504284x

    44. [44]

      (44) Zanardi, S.; Millini, R.; Frigerio, F.; Belloni, A.; Cruciani, G.; Bellussi, G.; Carati, A.; Rizzo, C.; Montanari, E. Microporous Mesoporous Mat. 2011, 143, 6. doi: 10.1016/j.micromeso.2011.01.025

    45. [45]

      (45) Marler, B.; Daniels, P.; Sañé i Muné, J. Microporous Mesoporous Mat. 2003, 64, 185. doi: 10.1016/S1387-1811(03)00466-9

    46. [46]

      (46) Lobo, R. F.; Pan, M.; Chan, I.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E. J. Phys. Chem. 1994, 98, 12040. (47) Pan, R. L.; Fan, W. B.; Li, Y. P.; Li, X. F.; Li, S.; Dou, T. Acta Phys. -Chim. Sin. 2011, 27, 2893. [潘瑞丽, 樊卫斌, 李玉平, 李晓峰, 李莎, 窦涛. 物理化学学报, 2011, 27, 2893.] doi: 10.3866/PKU.WHXB20112893

    47. [47]

      (48) Lobo, R. F.; Zones, S. I.; Davis, M. E. Stud. Surf. Sci. Catal. 1994, 84, 461. doi: 10.1016/S0167-2991(08)64146-4

    48. [48]

      (49) Sławiński, W. A.; Wragg, D. S.; Akporiaye, D.; Fjellvåg, H. Microporous Mesoporous Mat. 2014, 195, 311. doi: 10.1016/j.micromeso.2014.04.024

    49. [49]

      (50) Wadlinger, R. L.; Oneonta, Y, N.; Kerr, G. T.; Township, L.; County, M.; Rosinski, E. J.; Almonesson, N. J. Catalytic Composition of a Crystalline Zeolite. US Patent 6 3 308 069, 1967-03-07.

    50. [50]

      (51) Newsam, J. M.; Treacy, M. M. J.; Koetsier, W. T.; Gruyter, C. B. D. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1988, 420, 375. doi: 10.1098/rspa.1988.0131

    51. [51]

      (52) Corma, A.; Moliner, M.; Cantín, Á.; Díaz-Cabañas, M. J.; Jordá, J. L.; Zhang, D.; Sun, J.; Jansson, K.; Hovmöller, S.; Zou, X. Chem. Mater. 2008, 20, 3218. doi: 10.1021/cm8002244

    52. [52]

      (53) Burton, A.W.; Elomari, S.; Chan, I.; Pradhan, A.; Kibby, C. J. Phys. Chem. B 2005, 109, 20266. doi: 10.1021/jp052438x

    53. [53]

      (54) Corma, A.; Navarro, M. A. T.; Rey, F.; Valencia, S. Chem. Commun. 2001, 1720.

    54. [54]

      (55) Yu, Z. B.; Han, Y.; Zhao, L.; Huang, S.; Zheng, Q. Y.; Lin, S.; Córdova, A.; Zou, X.; Sun, J. Chem. Mater. 2012, 24, 3701.

    55. [55]

      (56) Sun, J.; Bonneau, C.; Cantin, A.; Corma, A.; Diaz-Cabanas, M. J.; Moliner, M.; Zhang, D.; Li, M.; Zou, X. Nature 2009, 458, 1154. doi: 10.1038/nature07957

    56. [56]

      (57) Moliner, M.; Willhammar, T.; Wan, W.; González, J.; Rey, F.; Jorda, J. L.; Zou, X.; Corma, A. J. Am. Chem. Soc. 2012, 134, 6473. doi: 10.1021/ja301082n Ksp

    57. [57]

      (58) Willhammar, T.; Sun, J.; Wan, W.; Oleynikov, P.; Zhang, D.; Zou, X.; Moliner, M.; Gonzalez, J.; Martínez, C.; Rey, F.; Corma, A. Nat. Chem 2012, 4, 188. doi: 10.1038/nchem.1253

    58. [58]

      (59) Kuznicki, S. M.; Easton, P. Large-pored Crystalline Titanium Molecular Sieve Zeolites. US Patent 4 853 202, 1989-08-01.

    59. [59]

      (60) Lobo, R. F.; van Koningsveld, H. J. Am. Chem. Soc. 2002, 124, 13222. doi: 10.1021/ja020569v

    60. [60]

      (61) Schlenker, J. L.; Rohrbaugh, W. J.; Chu, P.; Valyocsik, E.W.; Kokotailo, G. T. Zeolites 1985, 5, 355. doi: 10.1016/0144-2449 (85)90124-1

    61. [61]

      (62) Lobo, R. F.; Tsapatsis, M.; Freyhardt, C. C.; Chan, I.; Chen, C. Y.; Zones, S. I.; Davis, M. E. J. Am. Chem. Soc. 1997, 119, 3732. doi: 10.1021/ja963925g

    62. [62]

      (63) Van Koningsveld, H.; Lobo, R. F. J. Phys. Chem. B 2003, 107, 10983. doi: 10.1021/jp027341e

    63. [63]

      (64) Lobo, R. F.; Tsapatsis, M.; Freyhardt, C. C.; Khodabandeh, S.; Wagner, P.; Chen, C.Y.; Balkus, K. J.; Zones, S. I.; Davis, M. E. J. Am. Chem. Soc. 1997, 119, 8474. doi: 10.1021/ja9708528

    64. [64]

      (65) Feijen, E. J. P.; De Vadder, K.; Bosschaerts, M. H.; Lievens, J. L.; Martens, J. A.; Grobet, P. J.; Jacobs, P. A. J. Am. Chem. Soc. 1994, 116, 2950. doi: 10.1021/ja00086a027

    65. [65]

      (66) Goossens, A. M.; Wouters, B. H.; Buschmann, V.; Martens, J. A. Adv. Mater. 1999, 11, 561.

    66. [66]

      (67) Jarchow, O. Z. Kristallogr 1965, 122, 407. doi: 10.1524/zkri.1965.122.5-6.407

    67. [67]

      (68) Pauling, L. Z. Kristallogr. 1930, 74, 213.

    68. [68]

      (69) B, R. M. Hydrothermal Chemistry of Zeolites. Academic Press: London, 1982.

    69. [69]

      (70) Nair, S.; Jeong, H. K.; Chandrasekaran, A.; Braunbarth, C. M.; Tsapatsis, M.; Kuznicki, S. M. Chem. Mater. 2001, 13, 4247. doi: 10.1021/cm0103803

    70. [70]

      (71) Braunbarth, C.; Hillhouse, H.W.; Nair, S.; Tsapatsis, M.; Burton, A.; Lobo, R. F.; Jacubinas, R. M.; Kuznicki, S. M. Chem. Mater. 2000, 12, 1857. doi: 10.1021/cm9907211

    71. [71]

      (72) Zhang, L.; Tian, P.; Su, X.; Fan, D.; Wang, D. H.; Liu, Z. M. Chin. J. Catal. 2012, 33, 1724. [张琳, 田鹏, 苏雄, 樊栋, 王德花, 刘中民. 催化学报, 2012, 33, 1724.]

    72. [72]

      (73) Dai, C.; Zhang, A.; Li, L.; Hou, K.; Ding, F.; Li, J.; Mu, D.; Song, C.; Liu, M.; Guo, X. Chem. Mater. 2013, 25, 4197.

    73. [73]

      (74) Lupulescu, A. I.; Rimer, J. D. Science 2014, 344, 729. doi: 10.1126/science.1250984

    74. [74]

      (75) Gora, L.; Sulikowski, B.; Serwicka, E. M. Appl. Catal. A 2007, 325, 316. doi: 10.1016/j.apcata.2007.02.047

    75. [75]

      (76) Kong, D. J.; Liu, Z. C.; Fang, D. Y. Chin. J. Catal. 2009, 30, 885. [孔德金, 刘志成, 房鼎业. 催化学报, 2009, 30, 885.]

    76. [76]

      (77) Xie, S.; Liu, S.; Liu, Y.; Li, X.; Zhang, W.; Xu, L. Microporous Mesoporous Mat. 2009, 121, 166. doi: 10.1016/j.micromeso.2009.01.027

    77. [77]

      (78) Bouizi, Y.; Rouleau, L.; Valtchev, V. P. Microporous Mesoporous Mat. 2006, 91, 70. doi: 10.1016/j.micromeso.2005.11.016

    78. [78]

      (79) Bouizi, Y.; Diaz, I.; Rouleau, L.; Valtchev, V. P. Adv. Funct. Mater. 2005, 15, 1955.

    79. [79]

      (80) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663. doi: 10.1021/cr020060i

    80. [80]

      (81) Itani, L.; Liu, Y.; Zhang, W.; Bozhilov, K. N.; Delmotte, L.; Valtchev, V. J. Am. Chem. Soc. 2009, 131, 10127. doi: 10.1021/ja902088f

    81. [81]

      (82) Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K. Science 1994, 264, 1910. doi: 10.1126/science.264.5167.1910

    82. [82]

      (83) Lawton, S. L.; Fung, A. S.; Kennedy, G. J.; Alemany, L. B.; Chang, C. D.; Hatzikos, G. H.; Lissy, D. N.; Rubin, M. K.; Timken, H. K. C.; Steuernagel, S.; Woessner, D. E. J. Phys. Chem. 1996, 100, 3788.

    83. [83]

      (84) Borade, R. B.; Clearfield, A. Zeolites 1994, 14, 458. doi: 10.1016/0144-2449(94)90172-4

    84. [84]

      (85) Xie, S. J.; Liu, K. F.; Liu, S. L.; Liu, Y.; Zhang, W. P.; Xu, L. Y. Chin. J. Catal. 2010, 31, 1071. [谢素娟, 刘克峰, 刘盛林, 刘勇, 张维萍, 徐龙伢. 催化学报, 2010, 31, 1071.]

    85. [85]

      (86) Lee, Y. J.; Kim, S. D.; Byun, S. C.; Park, J.W.; Jeong, Y. J.; Kwon, Y. J.; Song, H. O.; Kim, W. J. J. Cryst. Growth 2006, 297, 138.

    86. [86]

      (87) Selvam, T.; Schwieger, W. Stud. Surf. Sci. Catal. 2002, 142, 407. doi: 10.1016/S0167-2991(02)80055-6

    87. [87]

      (88) de Ruite, R.; Famine, K.; Kentgens, A. P. M.; Jansen, J. C.; van Bekkum, H. Zeolites 1993, 13, 611. doi: 10.1016/0144-2449(93)90132-M

    88. [88]

      (89) Vaudry, F.; Renzo, F. D.; Fajula, F.; Schulz, P. Stud. Surf. Sci. Catal. 1994, 84, 163. doi: 10.1016/S0167-2991(08)64110-5

    89. [89]

      (90) Xie, Z. K.; Guan, N. J.; Xu, L. Y.; Yang, Q. H. Porous Catalytic Materials with New Structure and Improved Performance; China Petrochemical Press: Beijing, 2010. [谢在库, 关乃佳, 徐龙伢, 杨启华. 新结构高性能多孔催化材料. 北京: 中国石化出版社, 2010.]

    90. [90]

      (91) Briscoe, N. A.; Johnson, D.W.; Shannon, M. D.; Kokotailo, G. T.; McCusker, L. B. Zeolites 1988, 8, 74. doi: 10.1016/S0144-2449(88)80033-2

    91. [91]

      (92) Xu, Q.; Gong, Y.; Xu, W.; Xu, J.; Deng, F.; Dou, T. J. Colloid Interface Sci. 2011, 358, 252. doi: 10.1016/j.jcis.2011.03.027

    92. [92]

      (93) Gong, Y. J.; Zhang, Y. F.; Sun, L.Y.; Xing, L. F. Synthesis and Application of the Composite Molecular Sieves of EU-1 and ZSM-48. CN Patent 10 500 0571.A, 2015-10-28. [巩雁军, 张亚飞, 孙丽媛, 邢隆飞. 一种EU-1/ZSM-48 共生分子筛及其制备和应用: 中国, CN10 500 0571.A [P]. 2015-10-28.]

    93. [93]

      (94) Corma, A.; Corell, C.; Pérez-Pariente, J. Zeolites 1995, 15, 2. doi: 10.1016/0144-2449(94)00013-I

    94. [94]

      (95) Niu, X.; Song, Y.; Xie, S.; Liu, S.; Wang, Q.; Xu, L. Catal. Lett. 2005, 103, 211. doi: 10.1007/s10562-005-7156-4

    95. [95]

      (96) Peng, J. B.; Xie, S. J.; Wang, Q. X.; Xu, L. Y. Chin. J. Catal. 2002, 23, 363. [彭建彪, 谢素娟, 王清遐, 徐龙伢. 催化学报, 2002, 23, 363.]

    96. [96]

      (97) Wang, P.; Shen, B.; Gao, J. Catal. Commun. 2007, 8, 1161. doi: 10.1016/j.catcom.2006.10.021

    97. [97]

      (98) Yan, P.; Ma, B.; Zhang, X.W.; Zhang, Z. Z. Petroleum Processing and Petrochemicals 2011, 42, 17. [闫萍, 马波, 张喜文, 张志智. 石油炼制与化工, 2011, 42, 17.]

    98. [98]

      (99) Zhang, X.; Wang, J.; Zhong, J.; Liu, A.; Gao, J. Microporous Mesoporous Mat. 2008, 108, 13. doi: 10.1016/j.micromeso.2007.03.022

    99. [99]

      (100) Fan, Y.; Lei, D.; Shi, G.; Bao, X. Catal. Today 2006, 114, 388. doi: 10.1016/j.cattod.2006.02.050

    100. [100]

      (101) Bouizi, Y.; Rouleau, L.; Valtchev, V. P. Chem. Mater. 2006, 18, 4959. doi: 10.1021/cm0611744

    101. [101]

      (102) Pirngruber, G. D.; Laroche, C.; Maricar-Pichon, M.; Rouleau, L.; Bouizi, Y.; Valtchev, V. Microporous Mesoporous Mat. 2013, 169, 212. doi: 10.1016/j.micromeso.2012.11.016

    102. [102]

      (103) Bouizi, Y.; Majano, G.; Mintova, S.; Valtchev, V. J. Phys. Chem. C 2007, 111, 4535.

    103. [103]

      (104) Corma, A. Chem. Rev. 1997, 97, 2373. doi: 10.1021/cr960406n

    104. [104]

      (105) Cavalcante, C. L., Jr.; Ruthven, D. M. Ind. Eng. Chem. Res. 1995, 34, 185. doi: 10.1021/ie00040a018

    105. [105]

      (106) Zheng, J.; Zeng, Q.; Zhang, Y.; Wang, Y.; Ma, J.; Zhang, X.; Sun, W.; Li, R. Chem. Mater. 2010, 22, 6065. doi: 10.1021/cm101418z

    106. [106]

      (107) Conte, M.; Xu, B.; Davies, T. E.; Bartley, J. K.; Carley, A. F.; Taylor, S. H.; Khalid, K.; Hutchings, G. J. Microporous Mesoporous Mat. 2012, 164, 207. doi: 10.1016/j.micromeso.2012.05.001

    107. [107]

      (108) Chi, K. B.; Zhao, Z.; Tian, Z. J.; Hu, S.; Yan, L. J.; Li, T. S.; Wang, B. C.; Meng, X. B.; Gao, S. B.; Tan, M.W.; Liu Y. F. Pet. Sci. 2013, 10, 242. doi: 10.1007/s12182-013-0273-6

    108. [108]

      (109) Zhang, X.; Guo, Q.; Qin, B.; Zhang, Z.; Ling, F.; Sun, W.; Li, R. Catal. Today 2010, 149, 212. doi: 10.1016/j.cattod.2009.11.005

    109. [109]

      (110) Liu, B. J.; Zeng, X. J. Acta Phys. -Chim. Sin. 2009, 25, 2055. [刘百军, 曾贤君. 物理化学学报, 2009, 25, 2055.]  doi: 10.3866/PKU.WHXB20091032

    110. [110]

      (111) Zhang, Z.; Zong, B. N. Chin. J. Catal. 2003, 24, 856. [张哲, 宗保宁. 催化学报, 2003, 24, 856.]

    111. [111]

      (112) Kloetstra, K. R.; Zandbergen, H.W.; Jansen, J. C.; van Bekkum, H. Microporous Mater. 1996, 6, 287. doi: 10.1016/0927-6513(96)00036-3

    112. [112]

      (113) Song, Y.; Liu, S.; Wang, Q.; Xu, L.; Zhai, Y. Fuel Process. Technol. 2006, 87, 297. doi: 10.1016/j.fuproc.2005.05.003

    113. [113]

      (114) Xu, L.; Liu, J.; Wang, Q.; Liu, S.; Xin, W.; Xu, Y. Appl. Catal., A 2004, 258, 47. doi: 10.1016/j.apcata.2003.08.008

    114. [114]

      (115) Li, P.; Zhang, W.; Han, X.; Bao, X. Catal. Lett. 2009, 134, 124.

    115. [115]

      (116) Li, X.; Wang, C.; Liu, S.; Xin, W.; Wang, Y.; Xie, S.; Xu, L. J. Mol. Catal. A: Chem. 2011, 336, 34. doi: 10.1016/j.molcata.2010.12.007

    116. [116]

      (117) Bellussi, G.; Pazzuconi, G.; Perego, C.; Girotti, G.; Terzoni, G. J. Catal. 1995, 157, 227. doi: 10.1006/jcat.1995.1283

    117. [117]

      (118) Hoefnagel, A. J.; van Bekkum, H. Appl. Catal. A 1993, 97, 87. doi: 10.1016/0926-860X(93)80076-3

    118. [118]

      (119) Das, J.; Bhat, Y. S.; Halgeri, A. B. Catal. Lett. 1994, 23, 161. doi: 10.1007/BF00812144

    119. [119]

      (120) Wang, I.; Tsai, T. C.; Huang, S. T. Ind. Eng. Chem. Res. 1990, 29, 2005. doi: 10.1021/ie00106a005

    120. [120]

      (121) Nivarthy, G. S.; Feller, A.; Seshan, K.; Lercher, J. A. Microporous Mesoporous Mat. 2000, 35, 75.

    121. [121]

      (122) Alberti, A.; Cruciani, G.; Galli, E.; Merlino, S.; Millini, R.; Quartieri, S.; Vezzalini, G.; Zanardi, S. J. Phys. Chem. B 2002, 106, 10277. doi: 10.1021/jp021222h

    122. [122]

      (123) Roldán, R.; Beale, A. M.; Sánchez-Sánchez, M.; Romero-Salguero, F. J.; Jiménez-Sanchidrián, C.; Gómez, J. P.; Sankar, G. J. Catal. 2008, 254, 12. doi: 10.1016/j.jcat.2007.10.022

    123. [123]

      (124) Perego, C.; Amarilli, S.; Millini, R.; Bellussi, G.; Girotti, G.; Terzoni, G. Microporous Mater. 1996, 6, 395. doi: 10.1016/0927-6513(96)00037-5

    124. [124]

      (125) Tong, M.; Zhang, D.; Fan, W.; Xu, J.; Zhu, L.; Guo, W.; Yan, W.; Yu, J.; Qiu, S.; Wang, J.; Deng, F.; Xu, R. Scientific Reports 2015, 5, 11521. doi: 10.1038/srep11521

    125. [125]

      (126) Guisnet, M.; Gnep, N. S.; Morin, S. Microporous Mesoporous Mat. 2000, 35-36, 47.

    126. [126]

      (127) Guo, W.; Xiong, C.; Huang, L.; Li, Q. J. Mater. Chem. 2001, 11, 1886. doi: 10.1039/b009903l

    127. [127]

      (128) Huang, L.; Guo, W.; Deng, P.; Xue, Z.; Li, Q. J. Phys. Chem. B 2000, 104, 2817. doi: 10.1021/jp990861y

    128. [128]

      (129) Chen, H. L.; Shen, B. J.; Pan, H. F. Chin. J. Catal. 2004, 25, 715. [陈洪林, 申宝剑, 潘惠芳. 催化学报, 2004, 25, 715.]

    129. [129]

      (130) Chen, H. L.; Shen, B. J.; Pan, H. F. J. Acta Phys. -Chim. Sin. 2004, 20, 854. [陈洪林, 申宝剑, 潘惠芳. 物理化学学报, 2004, 20, 854.] doi: 10.3866/PKU.WHXB20040814

    130. [130]

      (131) Li, Z. H. Chinese Physics C 2013, 37, 108002. [李志宏. 中国物理C, 2013, 37, 108002.] doi: 10.1088/1674-1137/37/10/108002

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    11. [11]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    12. [12]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

Metrics
  • PDF Downloads(0)
  • Abstract views(987)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return