Citation: CAI Kai-Cong, ZHENG Xuan, LIU Ya-Nan, LIU Shan-Hong, DU Fen-Fen. Correlation between Amide-I Spectra and Structural Features of Glycine Dipeptide[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1289-1296. doi: 10.3866/PKU.WHXB201602291
-
Structural and spectroscopic features of a model dipeptide, glycine dipeptide (GLYD), were systematically investigated in the gas phase and in aqueous solution. Normal mode analysis was performed on the representative GLYD-D2O clusters selected from molecular dynamics (MD) trajectory for the vibrational parameters of amide-I mode, which is known to be sensitive to the secondary structure of proteins. On this basis, the correlation between the vibrational spectrum and the structural features of specific groups in the polypeptide was constructed. The electrostatic potential from the solvent molecules was calculated and projected onto the backbone of GLYD, and related to the amide-I frequency difference for GLYD in gas phase and solution phase. The secondary structure-dependent normal mode amide-I frequency database was also introduced for the consideration of the possible vibrational coupling that is intrinsically included in GLYD conformers. An electrostatic frequency map with secondary structural sensitivity was then built for the fast and accurate vibrational frequency prediction of the amide-I vibrational band for polypeptides in solution.
-
-
[1]
(1) Carrell, R.W.; Lomas, D. A. Lancet 1997, 350, 134. doi: 10.1016/S0140-6736(97)02073-4
-
[2]
(2) Savelieff, M. G.; DeToma, A. S.; Derrick, J. S.; Lim, M. H. Accoutns Chem. Res. 2014, 47, 2475. doi: 10.1021/ar500152x
-
[3]
(3) Dill, K. A.; MacCallum, J. L. Science 2012, 338, 1042. doi: 10.1126/science.1219021
-
[4]
(4) DeToma, A. S.; Salamekh, S.; Ramamoorthy, A.; Lim, M. H. Chem. Soc. Rev. 2012, 41, 608. doi: 10.1039/C1CS15112F
-
[5]
(5) Krimm, S.; Bandekar, J. Adv. Protein Chem. 1986, 38, 181. doi: 10.1016/S0065-3233(08)60528-8
-
[6]
(6) Barber-Armstrong,W.; Donaldson, T.;Wijesooriya, H.; Silva, R. A. G. D.; Decatur, S. M. J. Am. Chem. Soc. 2004, 126, 2339. doi: 10.1021/ja037863n
-
[7]
(7) Huang, C. Y.; Getahun, Z.; Zhu, Y.; Klemke, J.W.; DeGrado, W. F.; Gai, F. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2788. doi: 10.1073/pnas.052700099
-
[8]
(8) Du, D.; Zhu, Y.; Huang, C. Y.; Gai, F. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 15915. doi: 10.1073/pnas.0405904101
-
[9]
(9) Malolepsza, E.; Straub, J. E. J. Phys. Chem. B 2014, 118, 7848. doi: 10.1021/jp412827s
-
[10]
(10) Woys, A. M.; Almeida, A. M.;Wang, L.; Chiu, C. C.; McGovern, M.; de Pablo, J. J.; Skinner, J. L.; Gellman, S. H.; Zanni, M. T. J. Am. Chem. Soc. 2012, 134, 19118. doi: 10.1021/ja3074962
-
[11]
(11) Kim, Y. S.;Wang, J.; Hochstrasser, R. M. J. Phys. Chem. B 2005, 109, 7511. doi: 10.1021/jp044989d
-
[12]
(12) Moran, S. D.; Zanni, M. T. J. Phys. Chem. Lett. 2014, 5, 1984. doi: 10.1021/jz500794d
-
[13]
(13) Jones, K. C.; Peng, C. S.; Tokmakoff, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 2828. doi: 10.1073/pnas.1211968110
-
[14]
(14) Kim, H.; Cho, M. Chem. Rev. 2013, 113, 5817. doi: 10.1021/cr3005185
-
[15]
(15) Tucker, M. J.; Abdo, M.; Courter, J. R.; Chen, J.; Brown, S. P.; Smith, A. B.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17314. doi: 10.1073/pnas.1311876110
-
[16]
(16) Kim, Y. S.; Hochstrasser, R. M. J. Phys. Chem. B 2009, 113, 8231. doi: 10.1021/jp8113978
-
[17]
(17) Wang, J. P. Chin. Sci. Bull. 2007, 52, 1221. [王建平. 科学通报, 2007, 52, 1221.]
-
[18]
(18) Zheng, J. R. Physics 2010, 39, 162. [郑俊荣. 物理, 2010, 39, 162.]
-
[19]
(19) Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L. J. Chem. Phys. 2014, 140, 224111. doi: 10.1063/1.4882059
-
[20]
(20) Jansen, T. L. C. J. Phys. Chem. B 2014, 118, 8162. doi: 10.1021/jp5012445
-
[21]
(21) Reppert, M.; Tokmakoff, A. J. Chem. Phys. 2013, 138, 134116/1. doi: 10.1063/1.4798938
-
[22]
(22) Lin, Y. S.; Shorb, J. M.; Mukherjee, P.; Zanni, M. T.; Skinner, J. L. J. Phys. Chem. B 2009, 113, 592. doi: 10.1021/jp807528q
-
[23]
(23) Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L. J. Phys. Chem. B 2011, 115, 3713. doi: 10.1021/jp200745r
-
[24]
(24) Dijkstra, A. G.; Jansen, T. L. C.; Knoester, J. J. Phys. Chem. B 2011, 115, 5392. doi: 10.1021/jp109431a
-
[25]
(25) Lee, H.; Choi, J. H.; Cho, M. J. Chem. Phys. 2012, 137, 114307. doi: 10.1063/1.4751477
-
[26]
(26) Reppert, M.; Tokmakoff, A. J. Chem. Phys. 2015, 143, 061102. doi: 10.1063/1.4928637
-
[27]
(27) Cai, K.; Su, T.; Lin, S.; Zheng, R. Spectrochim. Acta A 2014, 117, 548. doi: 10.1016/j.saa.2013.08.058
-
[28]
(28) Shi, J. P.; Zhao, J.; Yang, F.;Wang, J. P. Acta Phys. -Chim. Sin. 2013, 29, 695. [石纪培, 赵娟, 杨帆, 王建平. 物理化学学报, 2013, 29, 695.] doi: 10.3866/PKU.WHXB201302213
-
[29]
(29) Cai, K.; Du, F.; Zheng, X.; Liu, J.; Zheng, R.; Zhao, J.;Wang, J. J. Phys. Chem. B 2016, 120, 1069. doi: 10.1021/acs.jpcb.5b11643
-
[30]
(30) Jansen, T. L. C.; Knoester, J. J. Phys. Chem. B 2006, 110, 22910. doi: 10.1021/jp064795t
-
[31]
(31) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Klaus, S. J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289
-
[32]
(32) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher,W. E., III; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.;Watanabe, M.;Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f
-
[33]
(33) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869
-
[34]
(34) Jamróz, M. H. Vibrational Energy Distribution Analysis VEDA 4; Warsaw: Poland, 2004-2010.
-
[35]
(35) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[36]
(36) Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J. Chem. Phys. 2004, 121, 8887. doi: 10.1063/1.1791632
-
[37]
(37) Papamokos, G. V.; Demetropoulos, I. N. J. Phys. Chem. A 2004, 108, 7291. doi: 10.1021/jp049563d
-
[38]
(38) Kim, Y. S.; Hochstrasser, R. M. J. Phys. Chem. B 2005, 109, 6884. doi: 10.1021/jp0449511
-
[39]
(39) Pohl, G.; Perczel, A.; Vass, E.; Magyarfalvi, G.; Tarczay, G. Phys. Chem. Chem. Phys. 2007, 9, 4698. doi: 10.1039/b705098d
-
[40]
(40) Cormanich, R. A.; Rittner, R.; Buhl, M. RSC Adv. 2015, 5, 13052. doi: 10.1039/C4RA16472E
-
[41]
(41) Saven, J. G.; Skinner, J. L. J. Chem. Phys. 1993, 99, 4391. doi: 10.1063/1.466092
-
[42]
(42) Kubo, R. Advances in Chemical Physcis; JohnWiley & Sons, Inc.: New York, 2007; p 101.
-
[43]
(43) Han, C.;Wang, J. ChemPhysChem 2012, 13, 1522. doi: 10.1002/cphc.v13.6
-
[1]
-
-
[1]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[2]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[3]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[4]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[5]
Wei Huang , Weiwei Chen , Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075
-
[6]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[7]
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
-
[8]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[9]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[10]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[11]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[12]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[13]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[14]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[15]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[16]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[17]
Hong Zheng , Xin Peng , Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058
-
[18]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[19]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[20]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(748)
- HTML views(16)