Citation: LIU Xiao-Qing, LI Shi-Hui, SUN Meng-Ting, YU Cheng-Long, HUANG Bi-Chun. Preparation, Characterization and Low-Temperature NH3-SCR Activity of MnOx/SAPO-11 Catalysts[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1236-1246. doi: 10.3866/PKU.WHXB201602251 shu

Preparation, Characterization and Low-Temperature NH3-SCR Activity of MnOx/SAPO-11 Catalysts

  • Corresponding author: HUANG Bi-Chun, 
  • Received Date: 23 November 2015
    Available Online: 22 February 2016

    Fund Project: 国家自然科学基金(51478191) (51478191)广东省省级科技计划项目(2014A020216003)资助 (2014A020216003)

  • MnOx/SAPO-11 catalysts were prepared by impregnation, citric acid, and precipitation methods for low-temperature selective catalytic reduction (SCR) of NO with NH3. The results indicated that the MnOx/SAPO-11 catalyst with 20%(w) Mn loading prepared by the precipitation method showed the best SCR activity and N2 selectivity. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), atomic absorption spectrometry (AAS), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD), NO/O2 temperature-programmed desorption, and mass spectrometry (NO/O2-TPD-MS) were used to analyze the structural properties and catalytic performance of the catalysts. The results indicated that different manganese oxides were formed on the surface of SAPO-11 by the three different preparation methods. MnOx loaded via the precipitation method existed as MnO2 phase and amorphous MnOx. The advantages of the catalyst prepared via this method were a large mesoporous and external surface area, the highest content of chemisorbed oxygen and Mn4+ as well as more favorable medium and strong acid sites. Thus, more NO2 was produced on the catalyst during low-temperature SCR, which was a primary goal. MnOx prepared by all three methods could be well-dispersed on the surface of SAPO-11. The dispersive action of SAPO-11 could affect the formation of MnOx, which could affect the acidity of the catalysts. Thus, the temperature window was widened and N2 selectivity was improved compared with pure MnOx, with SAPO-11 acting as an excellent carrier.
  • 加载中
    1. [1]

      (1) Yang, C.; Liu, X. Q.; Huang, B. C.; Wu, Y. M. Acta Phys.-Chim. Sin. 2014, 30, 1895. [杨超, 刘小青, 黄碧纯, 吴友明. 物理化学学报, 2014, 30, 1895.] doi: 10.3866/PKU.WHXB201407162

    2. [2]

      (2) Yao, X. J.; Gong, Y. T.; Li, H. L.; Yang, F. M. Acta Phys. -Chim. Sin. 2015, 31, 817. [姚小江, 贡营涛, 李红丽, 杨复沫, 物理化学学报, 2015, 31, 817.] doi: 10.3866/PKU.WHXB201503253

    3. [3]

      (3) Chen, J. H.; Cao, F. F.; Qu, R. Y.; Gao, X.; Cen, K. F. J. Colloid Interface Sci. 2015, 456, 66. doi: 10.1016/j.jcis.2015.06.001

    4. [4]

      (4) Lian, Z. H.; Liu, F. D.; He, H.; Shi, X. Y.; Mo, J. S.; Wu, Z. B. Chem. Eng. J. 2014, 250, 390. doi: 10.1016/j.cej.2014.03.065

    5. [5]

      (5) Wan, Y. P.; Zhao, W. R.; Tang, Y.; Li, L.; Wang, H. J.; Cui, Y. L.; Gu, J. L.; Li, Y. S.; Shi, J. L. Appl. Catal. B-Environ. 2014, 148, 114. doi: 10.1016/j.apcatb.2013:10.049

    6. [6]

      (6) Andreoli, S.; Deorsola, F. A.; Galletti, C.; Pirone, R. Chem. Eng. J. 2015, 278, 174. doi: 10.1016/j.cej.2014.11.023

    7. [7]

      (7) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福, 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201205113

    8. [8]

      (8) Huang, P.; Pan, S.W.; Huang, B. C.; Cheng, H.; Ye, D. Q.; Wu, J. L.; Fu, M. L.; Lu, S. L. Acta Phys. -Chim. Sin. 2013, 29, 176. [黄萍, 盘思伟, 黄碧纯, 程华, 叶代启, 吴军良, 付名利, 卢圣良. 物理化学学报, 2013, 29, 176.] doi: 10.3866/PKU.WHXB201210094

    9. [9]

      (9) Jiao, J. Z.; Li, S. H.; Huang, B. C. Acta Phys. -Chim. Sin. 2015, 31, 1383. [焦金珍, 李时卉, 黄碧纯. 物理化学学报, 2015, 31, 1383.] doi: 10.3866/PKU.WHXB201504292

    10. [10]

      (10) Venkatathri, N.; Srivastava, R. Stud. Surf. Sci. Catal. 2004, 154, 978. doi: 10.1016/S0167-2991(04)80913-3

    11. [11]

      (11) Meriaudeau, P.; Tuan, V. A.; Nghiem, V. T.; Lai, S. Y.; Hung, L. N.; Naccache, C. J. Catal. 1997, 169, 55. doi: 10.1006/jcat.1997.1647

    12. [12]

      (12) Yang, X. M.; Xu, Z. S.; Tian, Z. J.; Ma, H. J.; Xu, Y. P.; Qu, W.; Lin, L.W. Catal. Lett. 2006, 109, 139. doi: 10.1007/s10562-006-0070-6

    13. [13]

      (13) Wang, Z. M.; Tian, Z. J.; Teng, F.; Wen, G. D.; Xu, Y. P.; Xu, Z. S.; Lin, L.W. Catal. Lett. 2005, 103, 109. doi: 10.1007/s10562-005-6510-x

    14. [14]

      (14) Wang, Z. M.; Tian, Z. J.; Teng, F.; Xu, Y. P.; Hu, S.; Tan, M. W.; Xu, Z. S.; Lin, L.W. Chin. J. Catal. 2005, 26, 819. [汪哲明, 田志坚, 滕飞, 徐云鹏, 胡胜, 谭明伟, 徐竹生, 林励吾. 催化学报, 2005, 26, 819.]

    15. [15]

      (15) Campelo, J. M.; Lafont, F.; Marinas, J. M. Appl. Catal. A-Gen. 1998, 170, 139. doi: 10.1016/S0926-860X(98)00036-2

    16. [16]

      (16) Tian, S. S.; Chen, J. X. Fuel Process. Technol. 2014, 122, 120. doi: 10.1016/j.fuproc.2014.01.031

    17. [17]

      (17) Mathisen, K.; Stockenhuber, M.; Nicholson, D. G. Phys. Chem. Chem. Phys. 2009, 11, 5476. doi: 10.1039/b902491c

    18. [18]

      (18) Worch, D.; Suprun, W.; Glaeser, R. Catal. Today 2011, 176, 309. doi: 10.1016/j.cattod.2010.12.008

    19. [19]

      (19) Jiang, B. Q.; Liu, Y.; Wu, Z. B. J. Hazard. Mater. 2009, 162, 1249. doi: 10.1016/j.jhazmat.2008.06.013

    20. [20]

      (20) Ning, P.; Song, Z. X.; Li, H.; Zhang, Q. L.; Liu, X.; Zhang, J. H.; Tang, X. S.; Huang, Z. Z. Appl. Surf. Sci. 2015, 332, 130. doi: 10.1016/j.apsusc.2015.01.118

    21. [21]

      (21) Guo, R. T.; Zhen, W. L.; Pan, W. G.; Hong, J. N.; Jin, Q.; Ding, C. G.; Guo, S. Y. Environ. Technol. 2014, 35, 1766. doi: 10.1080/09593330.2014.881424

    22. [22]

      (22) Mao, D. S.; Tao, L. H.; Guo, Y. L.; Lu, G. Z. Industrial Catalysis 2008, 16, 21. [毛东森, 陶丽华, 郭杨龙, 卢冠忠. 工业催化, 2008, 16, 21.]

    23. [23]

      (23) Wang, L. S. Low-temperature Selective Catalytic Reduction of MxOy/MWCNTs Catalysts and Reaction Mechanism Study. Master Dissertation, South China University of Technology, Guangzhou, 2012. [王丽珊. MxOy/MWCNTs 催化剂的低温SCR性能与反应机理研究. 广州华南理工大学, 2012.]

    24. [24]

      (24) Myeong-Heon, U.; Kang, M. J. Ind. Eng. Chem. 2005, 11, 540.

    25. [25]

      (25) Xu, X. T.; Zhai, J. P.; Li, I. L.; Ruan, S. C. Appl. Mech. Mate. 2013, 275-277, 1737. doi: 10.4028/www.scientific.net/AMM.275-277.1737

    26. [26]

      (26) Zhang, Y.W.; Shen, M. Q.; Wu, X. D.; Weng, D.; Zhang, Z. H.; Tian, R.; Chi, K. B. Acta Phys. -Chim. Sin. 2006, 22, 1495. [张钺伟, 沈美庆, 吴晓东, 翁端, 张志华, 田然, 迟克彬. 物理化学学报, 2006, 22, 1495.] doi: 10.1016/S1872-1508(06)60077-6

    27. [27]

      (27) Liu, Q. Y.; Zuo, H. L.; Wang, T. J.; Ma, L. L.; Zhang, Q. Appl. Catal. A-Gen. 2013, 468, 68. doi: 10.1016/j.apcata.2013.08.009

    28. [28]

      (28) Wang, L.; Huang, B.; Su, Y.; Zhou, G.; Wang, K.; Luo, H.; Ye, D. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012

    29. [29]

      (29) Yu, C. L.; Wang, L. S.; Huang, B. C. Aerosol Air Qual. Res. 2015, 15, 1017. doi: 10.4209/acqr.2014.08.0162

    30. [30]

      (30) Wang, D.; Jangjou, Y.; Liu, Y.; Sharma, M. K.; Luo, J.; Li, J.; Kamasamudram, K.; Epling, W. S. Appl. Catal. B-Environ. 2015, 165, 438. doi: 10.1016/j.apcatb.2014.10.020

    31. [31]

      (31) Greenhalgh, B.; Fee, M.; Dobri, A.; Moir, J.; Burich, R.; Charland, J. P.; Stanciulescu, M. J. Mol. Catal. A-Chem. 2010, 333, 121. doi: 10.1016/j.molcata.2010.10.008

    32. [32]

      (32) Stobbe, E. R.; Boer, B. A.; Geus, J.W. Catal. Today 1999, 47, 161. doi: 10.1016/S0920-5861(98)00296-X

    33. [33]

      (33) Trawczyński, J.; Bielak, B.; Miśta, W. Appl. Catal. B-Environ. 2005, 55, 277. doi: 10.1016/j.apcatb.2004.09.005

  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    13. [13]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(0)
  • Abstract views(645)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return