Citation: LIU Guo, LU Yuan-Yuan, ZHANG Jing, LI Zhi, FENG Zhao-Chi, LI Can. Phase Transformation and Photocatalytic Properties of Bi2O3 Prepared Using a Precipitation Method[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1247-1256. doi: 10.3866/PKU.WHXB201602231
-
A Bi(OH)3 precursor was prepared using a precipitation method using bismuth nitrate as a starting material and ammonia as the precipitation agent. Bi(OH)3 was then calcined at different temperatures and different time. X-ray diffraction (XRD), Raman spectroscopy, thermogravimetry (TG), scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UVVis DRS) were used to investigate the phase transformation from Bi(OH)3 to Bi2O3 and the particle size, morphology, and optical properties of Bi2O3 during the phase transformation. It was found that Bi(OH)3 after calcination undergoes the following process: Bi(OH)3 → Bi5O7NO3 → β-Bi2O3/Bi5O7NO3 → β-Bi2O3/Bi5O7NO3/α-Bi2O3 → α-Bi2O3. It was observed that the above phase transformation from Bi(OH)3 to Bi2O3 and the growth of the particle size are interrelated. It was also found that the phase transition from β-Bi2O3 to α-Bi2O3 was faster compared with the phase transition from Bi5O7NO3 to β-Bi2O3. Also, the degradation of Rhodamine B (RhB) was studied to investigate and compare the photocatalytic performance of Bi2O3 with different crystalline phases. The result indicates that Bi5O7NO3 and β-Bi2O3 exhibit excellent photocatalytic performance, while α-Bi2O3 has a low photocatalytic activity.
-
Keywords:
- Bi5O7NO3,
- β-Bi2O3,
- α-Bi2O3,
- Bismuth oxide,
- Precipitation method,
- Phase transformation
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Karunakaran, C.; Dhanalakshmi, R. Sol. Energy Mater. Sol. Cells 2008, 92 (5), 588. doi: 10.1016/j.solmat.2007.12.009
-
[3]
(3) Zhu, J. F.; Zäch, M. Curr. Opin. Colloid Interface Sci. 2009, 14 (4), 260. doi: 10.1016/j.cocis.2009.05.003
-
[4]
(4) Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Annu. Rev. Phys. Chem. 2012, 63, 541. doi: 10.1146/annurev-physchem-032511-143759
-
[5]
(5) Cheng, H. F.; Huang, B. B.; Lu, J. B.; Wang, Z. Y.; Xu, B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Phys. Chem. Chem. Phys. 2010, 12 (48), 15468. doi: 10.1039/c0cp01189d
-
[6]
(6) Wang, C. H.; Shao, C. L.; Liu, U. C.; Zhang, L. N. Scripta Mater. 2008, 59 (3), 332. doi: 10.1016/j.scriptamat.2008.03.038
-
[7]
(7) Wang, C.; Shao, C.; Wang, L.; Zhang, L.; Li, X.; Liu, Y. J. Colloid Interface Sci. 2009, 333 (1), 242. doi: 10.1016/j.jcis.2008.12.077
-
[8]
(8) Brezesinski, K.; Ostermann, R.; Hartmann, P.; Perlich, J.; Brezesinski, T. Chem. Mater. 2010, 22 (10), 3079. doi: 10.1021/cm903780m
-
[9]
(9) Hou, J. G.; Yang, C.; Wang, Z.; Zhou,W. L.; Jiao, S. Q.; Zhu, H. M. Appl. Catal. B: Environ. 2013, 142-143, 504.
-
[10]
(10) Xiao, X.; Hua, R. P.; Liu, C.; Xing, C. L.; Qian, C.; Zuo, X. X.; Nan, J. M.; Wang, L. S. Appl. Catal. B: Environ. 2013, 140-141, 433.
-
[11]
(11) Huang, Q. Q.; Zhang, S. N.; Cai, C. X.; Zhou, B. Mater. Lett. 2011, 65 (6), 988. doi: 10.1016/j.matlet.2010.12.055
-
[12]
(12) Qiu, Y. F.; Yang, M. L.; Fan, H. B.; Zuo, Y. Z.; Shao, Y. Y.; Xu, Y. J.; Yang, X. X.; Yang, S. H. CrystEngComm 2011, 13 (6), 1843. doi: 10.1039/C0CE00508H
-
[13]
(13) Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Dalton Trans. 2013, 42 (4), 1047. doi: 10.1039/C2DT32119J
-
[14]
(14) Lu, Y.; Zhao, Y.; Zhao, J. Z.; Song, Y. H.; Huang, Z. F.; Gao, F. F.; Li, N.; Li, Y.W. Ceram. Int. 2014, 40 (9), 15057. doi: 10.1016/j.ceramint.2014.06.113
-
[15]
(15) Zhu, G. Q.; Lian, J.; Hojamberdiev, M.; Que,W. X. J. Clust. Sci. 2013, 24 (3), 829. doi: 10.1007/s10876-013-0576-1
-
[16]
(16) Cai, G. Y.; Xu, L. L.; Wei, B.; Che, J. X.; Gao, H.; Sun,W. J. Mater. Lett. 2014, 120, 1. doi: 10.1016/j.matlet.2014.01.027
-
[17]
(17) Hu, R. P.; Xiao, X.; Tu, S. H.; Zuo, X. X.; Nan, J. M. Appl. Catal. B: Environ. 2015, 163, 510. doi: 10.1016/j.apcatb.2014.08.025
-
[18]
(18) Sun, Y. Y.; Wang,W. Z.; Zhang, L.; Zhang, Z. J. Chem. Eng. J. 2012, 211-212 (15), 161.
-
[19]
(19) Li, R.; Zhen, Q.; Guo, S. Q.; Shi, G.; Vannier, R. N.; Drache, M. J. Funct. Mater. 2006, 37 (11), 1828. [李榕, 甄强, 郭曙强, 石刚, Rose-Noelle Vannier, Michel Drache. 功能材料, 2006, 37 (11), 1828.]
-
[20]
(20) Cheng, L. J.; Kang, Y. J. Alloy. Compd. 2014, 585, 85. doi: 10.1016/j.jallcom.2013.08.010
-
[21]
(21) Tseng, T. K.; Choi, J.; Jung, D.W.; Davidson, M.; Holloway, P. H. ACS. Appl. Mater. Interfaces 2010, 2, 943. doi: 10.1021/am900812a
-
[22]
(22) Zhang, J.; Xu, Q.; Li, M. J.; Feng, Z. C.; Li, C. J. Phys. Chem. C 2009, 113 (5), 1698. doi: 10.1021/jp808013k
-
[23]
(23) Li, M. J.; Feng, Z. C.; Xiong, G.; Ying, P. L.; Xin, Q.; Li, C. J. Phys. Chem. B 2001, 105, 8107. doi: 10.1021/jp010526l
-
[24]
(24) Wu, S. H.; Liu, J.; Lan, Y. Z. Hydrometallurgy of China 2005, 24 (3), 121. [吴绍华, 刘进, 兰尧中. 湿法冶金, 2005, 24 (3), 121.]
-
[25]
(25) Abdullah, A. H.; Abdullah, E. A.; Zainal, Z.; Hussein, M. Z.; Ban, T. K. Water Sci. Technol. 2012, 65 (9), 1632. doi: 10.2166/wst.2012.057
-
[26]
(26) Abdullah, E. A.; Abdullah, A. H.; Zainal, Z.; Hussein, M. Z.; Ban, T. K. E-J. Chem. 2012, 9 (4), 2429. doi: 10.1155/2012/707853
-
[27]
(27) Yu, S. J.; Zhang, G. K.; Gao, Y. Y.; Huang, B. B. J. Colloid Interface Sci. 2011, 354, 322. doi: 10.1016/j.jcis.2010.10.012
-
[28]
(28) Lu, Y. G.; Yang, Y. C.; Ye, Z. X.; Liu, S. Y. J. Inorg. Mater. 2012, 27 (6), 643. [卢远刚, 杨迎春, 叶芝祥, 刘盛余. 无机材料学报, 2012, 27 (6), 643.] doi: 10.3724/SP.J.1077.2012.00643
-
[29]
(29) Kodama, H. J. Solid State Chem. 1994, 112, 27. doi: 10.1006/jssc.1994.1259
-
[30]
(30) Hao,W. C.; Gao, Y.; Jing, X.; Zou,W.; Chen, Y.; Wang, T. M. J. Mater. Sci. Technol. 2014, 30 (2), 192. doi: 10.1016/j.jmst.2013.09.023
-
[31]
(31) Kumar, K. P. Scripta Metall. Mater. 1995, 32 (6), 873. doi: 10.1016/0956-716X(95)93217-R
-
[32]
(32) Hague, D. C.; Mayo, M. J. Nanostruct. Mater. 1993, 3 (1-6), 61. doi: 10.1016/0965-9773(93)90063-H
-
[33]
(33) Banfield, J. F.; Bischoff, B. L.; Anderson, M. A. Chem. Geol. 1993, 110 (1-3), 211. doi: 10.1016/0009-2541(93)90255-H
-
[34]
(34) Kumar, K. N. P.; Keizer, K. A.; Burggraaf, J.; Okubo, T.; Nagamoto, H.; Morooka, S. Nature 1992, 358 (6381), 48. doi: 10.1038/358048a0
-
[35]
(35) Wu, Y. C.; Chaing, Y. C.; Huang, C. Y.; Wang, S. F.; Yang, H. Y. Dyes Pigments 2013, 98, 25. doi: 10.1016/j.dyepig.2013.02.006
-
[36]
(36) Li, X. Y.; Wang, D. S.; Cheng, G. X.; Luo, Q. Z.; An, J.; Wang, Y. H. Appl. Catal. B: Environ. 2008, 81, 267. doi: 10.1016/j.apcatb.2007.12.022
-
[1]
-
-
[1]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[2]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[3]
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
-
[4]
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
-
[5]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[6]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[7]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[8]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[9]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[10]
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
-
[11]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[14]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[15]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[16]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[17]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[18]
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(787)
- HTML views(69)