Citation: TANG Wei, WANG Jing. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1087-1104. doi: 10.3866/PKU.WHXB201602224 shu

Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors

  • Corresponding author: WANG Jing, 
  • Received Date: 16 November 2015
    Available Online: 19 February 2016

    Fund Project: 国家自然科学基金(61574025,61131004)资助项目 (61574025,61131004)

  • The metal oxide heterojunction has often been used to improve the gas sensing properties of resistive metal oxide semiconductor gas sensors. Metal oxide heterojunctions have been demonstrated to have many unique properties such as Fermi-level mediated charge transfer effects as well as synergistic behavior of different components. In this short review, we summarize the fundamental types of metal oxide heterojunction materials reported in domestic and foreign research in recent years. Metal oxide heterojunctions are mainly divided into five categories of mixed composite structures, multi-layer films, structure modified with a second phase, 1D nanostructure and core-shell structure. We review the enhanced gas sensing mechanisms of metal oxide heterojunctions. These mechanisms are discussed in detail, including the role of the heterojunction, synergistic effects, the spill-over effect, response-type inversion, separation of charge carriers, and microstructure manipulation. We also analyze the remaining challenges of metal oxide heterojunction gas sensors. Finally, we provide an outlook for future development of metal oxide heterojunction gas sensors. The future research directions of metal oxide heterojunction gas sensors can be developed from the definition of heterojunction interface mechanisms. It is hoped that determining the heterojunction interface mechanisms will provide some reference for the design of needed gas sensors in a bottom-up route.
  • 加载中
    1. [1]

      (1) Wang, X.W. Principle and Application of Sensor; BeihangUniversity Press: Beijing, 2004; pp 2-25. [王雪文. 传感器原理及应用. 北京: 北京航空航天大学出版社, 2004: 2-25.]

    2. [2]

      (2) Lee, S. C.; Hwang, B.W.; Kim, S. Y.; An, J. H.; Jung, S. Y.; Huh, J. S.; Lee, D. D.; Kim, J. C. J. Nanoelectron. Optoe. 2015, 10. doi: 10.1166/jno.2015.1782

    3. [3]

      (3) Zhao, H. J.; Hou, H. T.; Cao, J. M.; Zheng, M. B.; Liu, J. S.; Zhang, F. Acta Phys. -Chim. Sin. 2007, 23 (6), 959. [赵海军, 候海涛, 曹洁明, 郑明波, 刘劲松, 张防. 物理化学学报, 2007, 23 (6), 959.] doi: 10.3866/PKU.WHXB20070633

    4. [4]

      (4) Hu, R. J.; Wang, J.; Zhu, H. C. Acta Phys. -Chim. Sin. 2015, 31(10), 1997. [胡瑞金, 王兢, 朱慧超. 物理化学学报, 2015, 31(10), 1997.] doi: 10.3866/PKU.WHXB201508241

    5. [5]

      (5) Kumar, R.; Kumar, G.; Al-Dossary, O.; Umar, A. Mater. Express 2015, 5 (1), 3. doi: 10.1166/mex.2015.1204

    6. [6]

      (6) Hu, H. T.; He, T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1421. [胡海峰, 贺涛. 物理化学学报, 2015, 31 (7), 1421.] doi: 10.3866/PKU.WHXB201504221

    7. [7]

      (7) Feng, Q. X.; Yu, P.; Wang, J.; Li, X. G. Acta Phys. -Chim. Sin. 2015, 31 (12), 2405. [冯秋霞, 于鹏, 王兢, 李晓干. 物理化学学报, 2015, 31 (12), 2405.] doi: 10.3866/PKU.WHXB201510261

    8. [8]

      (8) Li, P.; Fan, H. Mater. Sci. Semicond. Process. 2015, 29, 83. doi: 10.1016/j.mssp.2013.09.026

    9. [9]

      (9) Chen, P. P.; Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta Phys. -Chim. Sin. 2013, 29 (8), 1827. [陈鹏鹏, 王兢, 张春丽, 郝育闻, 杜海英. 物理化学学报, 2013, 29 (8), 1827.] doi: 10.3866/PKU.WHXB201306091

    10. [10]

      (10) Yang, X.; Salles, V.; Kaneti, Y. V.; Liu, M.; Maillard, M.; Journet, C.; Jiang, X.; Brioude, A. Sens. Actuator B-Chem. 2015, 220, 1112. doi: 10.1016/j.snb.2015.05.121

    11. [11]

      (11) Poulomi, R.; Steffen, B.; Patrik, S. Angew. Chem. 2011, 50 (13), 2904. doi: 10.1002/anie.201001374

    12. [12]

      (12) Huang, K. J.; Yan, L.; Xie, C. S. Appl. Mecha. Mater. 2010, 29-32, 596. doi: 10.4028/www.scientific.net/AMM.29-32.596

    13. [13]

      (13) Rezlescu, N.; Doroftei, C.; Rezlescu, E.; Craus, M. L. Rom. Rep. Phys. 2008, 60 (4), 1041.

    14. [14]

      (14) Chen, J.; Xu, L.; Li, W.; Gou, X. Adv. Mater. 2005, 17 (5), 582.doi: 10.1002/adma.200401101

    15. [15]

      (15) Yang, C.; Xiao, F.; Wang, J.; Su, X. Sens. Actuator B-Chem. 2015, 207, 177. doi: 10.1016/j.snb.2014.10.063

    16. [16]

      (16) Li, H. C. Appl. Mecha. Mater. 2013, 303-306, 42. doi: 10.4028/www.scientific.net/AMM.303-306.42

    17. [17]

      (17) Li, P.; Yu, P.; Xiao, D. Q. Funct. Mater. 1999, 30 (2), 56. [李平, 余萍, 肖定全. 功能材料, 1999, 30 (2), 56.]

    18. [18]

      (18) Feng, Z. Y. Preparation, Structure and Properties of α-Fe2O3 Based Gas Sensors. Master Dissertation, Fuzhou University, Fuzhou, 2001. [冯祖勇. α-Fe2O3 基气敏纳米材料的制备及其结构、性能的研究[D] . 福州: 福州大学, 2001.]

    19. [19]

      (19) Hoffman, R. L.; Norris, B. J.; Wager, J. F. Appl. Phys. Lett. 2003, 82 (5), 733. doi: 10.1063/1.1542677

    20. [20]

      (20) Yang, J. H.; Hou, H.; Wang, L.; Liu, F. Chin. J. Sens. Actuators 2002, 15 (3), 197. [杨建华, 侯宏, 王磊, 刘福. 传感技术学报, 2002, 15 (3), 197.]

    21. [21]

      (21) Wei, C. H. A Qualitative Analysis and Quantitative Estimationof the Mixed Gas Based on the Electronic Nose System. MasterDissertation, Zhejiang University, Hangzhou, 2012. [韦彩虹. 基于电子鼻系统的混合气体的定性分析和定量估计[D] . 杭州: 浙江大学, 2012.]

    22. [22]

      (22) Chen, W.; 2016-5-4Li, Q.; Xu, L.; Zeng, W. J. Nanosci. Nanotechno. 2015, 15, 1245. doi: 10.1166/jnn.2015.9061

    23. [23]

      (23) Patil, D. R.; Patil, L. A. Talanta 2009, 77 (4), 1409. doi: 10.1016/j.talanta.2008.09.038

    24. [24]

      (24) Moon, W. J.; Yu, J. H.; Choi, G. M. J. Electroceram. 2004, 13(1-3), 707. doi: 10.1007/s10832-004-5180-1

    25. [25]

      (25) Yu, Q.; Zhu, J.; Xu, Z.; Huang, X. Sens. Actuator B-Chem. 2015, 213, 27. doi: 10.1016/j.snb.2015.01.130

    26. [26]

      (26) Katoch, A.; Choi, S.W.; Kim, J. H.; Lee, J. H.; Lee, J. S.; Sang, S. K. Sens. Actuator B-Chem. 2015, 214, 111.

    27. [27]

      (27) Kim, S.; Park, S.; Sun, G. J.; Hyun, S. K.; Kim, K. K.; Lee, C.Curr. Appl. Phys. 2015, 15 (8), 947. doi: 10.1016/j.cap.2015.05.005

    28. [28]

      (28) Park, S.; Kim, S.; Sun, G. J.; Lee, C. Thin Solid Films 2015, 591, 341. doi: 10.1016/j.tsf.2015.04.045

    29. [29]

      (29) Yu, L. S. Semiconductor Heterojunction Physics; Science Press: Beijing, 1990; pp 200-240. [虞丽生. 半导体异质结物理. 北京: 科学出版社, 1990: 200-240.]

    30. [30]

      (30) Kusior, A.; Radecka, M.; Rekas, M.; Lubecka, M.; Zakrzewska, K.; Reszka, A.; Kowalski, B. J. Procedia Engineering 2012, 47, 1073. doi: 10.1016/j.proeng.2012.09.336

    31. [31]

      (31) Chen, A.; Bai, S.; Shi, B.; Liu, Z.; Li, D.; Liu, C. C. Sens. Actuator B-Chem. 2008, 135 (1), 7. doi: 10.1016/j.snb.2008.06.050

    32. [32]

      (32) Tang, W.; Wang, J.; Qiao, Q.; Liu, Z. H.; Li, X. G. J. Mater. Sci. 2015, 50 (6), 2605. doi: 10.1007/s10853-015-8836-0

    33. [33]

      (33) Tang, W.; Wang, J.; Yao, P.; Li, X. Sens. Actuator B-Chem. 2014, 192, 543. doi: 10.1016/j.snb.2013.11.003

    34. [34]

      (34) Yu, X.; Zhang, G.; Cao, H.; An, X.; Wang, Y.; Shu, Z.; An, X.; Hua, F. New J. Chem. 2012, 36 (12), 2593. doi: 10.1039/C2NJ40770A

    35. [35]

      (35) Sun-Woo, C.; Jae Young, P.; Sang Sub, K. Nanotechnology 2009, 20 (46), 465603. doi: 10.1088/0957-4484/20/46/465603

    36. [36]

      (36) Wang, L.; Kang, Y.; Wang, Y.; Zhu, B.; Zhang, S.; Huang, W.; Wang, S. Mater. Sci. Eng., C 2012, 32 (7), 2079. doi: 10.1016/j.msec.2012.05.042

    37. [37]

      (37) Liu, Y.; Zhu, G.; Chen, J.; Xu, H.; Shen, X.; Yuan, A. Appl. Surf. Sci. 2013, 265 379. doi: 10.1016/j.apsusc.2012.11.016

    38. [38]

      (38) Wang, W.; Li, Z.; Zheng, W.; Huang, H.; Wang, C.; Sun, J. Sens. Actuator B-Chem. 2010, 143 (2), 754. doi: 10.1016/j.snb.2009.10.016

    39. [39]

      (39) Zeng, Y.; Bing, Y. F.; Liu, C.; Zheng, W. T.; Zou, G. T. Trans. Nonferrous Met. Soc. China 2012, 22 (10), 2451. doi: 10.1016/S1003-6326(11)61484-2

    40. [40]

      (40) Rumyantseva, M.; Kovalenko, V.; Gaskov, A.; Makshina, E.; Yuschenko, V.; Ivanova, I.; Ponzoni, A.; Faglia, G.; Comini, E.Sens. Actuator B-Chem. 2006, 118 (1-2), 208. doi: 10.1016/j.snb.2006.04.024

    41. [41]

      (41) de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Sivanand, P. S. Sens. Actuator B-Chem. 2003, 92 (1-2), 159.doi: 10.1016/S0925-4005(03)00258-2

    42. [42]

      (42) Chen, A.; Huang, X.; Tong, Z.; Bai, S.; Luo, R.; Liu, C. C. Sens. Actuator B-Chem. 2006, 115 (1), 316. doi: 10.1016/j.snb.2005.09.015

    43. [43]

      (43) Liangyuan, C.; Shouli, B.; Guojun, Z.; Dianqing, L.; Aifan, C.; Liu, C. C. Sens. Actuator B-Chem. 2008, 134 (2), 360.

    44. [44]

      (44) Xiao, L.; Shu, S.; Liu, S. Sens. Actuator B-Chem. 2015, 221, 120. doi: 10.1016/j.snb.2015.06.099

    45. [45]

      (45) Bagal, L. K.; Patil, J. Y.; Vaishampayan, M. V.; Mulla, I. S.; Suryavanshi, S. S. Sens. Actuator B-Chem. 2015, 207, 383. doi: 10.1016/j.snb.2014.10.021

    46. [46]

      (46) Choi, J. K.; Hwang, I. S.; Kim, S. J.; Park, J. S.; Park, S. S.; Jeong, U.; Kang, Y. C.; Lee, J. H. Sens. Actuator B-Chem. 2010, 150 (1), 191. doi: 10.1016/j.snb.2010.07.013

    47. [47]

      (47) Ivanov, P.; Llobet, E.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Correig, X. Sens. Actuator B-Chem. 2004, 99 (2), 201.doi: 10.1016/j.snb.2003.11.012

    48. [48]

      (48) Yamazoe, N.; Sakai, G.; Shimanoe, K. Catal. Surv. Asia 2003, 7(1), 63. doi: 10.1023/A: 1023436725457

    49. [49]

      (49) Yamazoe, N. Sens. Actuator B-Chem. 1991, 5 (91), 7.doi: 10.1016/0925-4005(91)80213-4

    50. [50]

      (50) Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Sens. Actuator B-Chem. 2001, 80 (2), 125. doi: 10.1016/S0925-4005(01)00890-5

    51. [51]

      (51) de Lacy Costello, B. P. J.; Ewen, R. J.; Jones, P. R. H.; Ratcliffe, N. M.; Wat, R. K. M. Sens. Actuator B-Chem. 1999, 61 (1-3), 199. doi: 10.1016/S0925-4005(99)00309-3

    52. [52]

      (52) de Lacy Costello, B. P. J.; Ewen, R. J.; Guernion, N.; Ratcliffe, N. M. Sens. Actuator B-Chem. 2002, 87 (1), 207. doi: 10.1016/S0925-4005(02)00220-4

    53. [53]

      (53) Shaposhnik, D.; Pavelko, R.; Llobet, E.; Gispert-Guirado, F.; Vilanova, X. Procedia Engineering 2011, 25, 1133. doi: 10.1016/j.proeng.2011.12.279

    54. [54]

      (54) Lyson-Sypien, B.; Czapla, A.; Lubecka, M.; Kusior, E.; Zakrzewska, K.; Radecka, M.; Kusior, A.; Balogh, A. G.; Lauterbach, S.; Kleebe, H. J. Sens. Actuator B-Chem. 2013, 187, 445. doi: 10.1016/j.snb.2013.01.047

    55. [55]

      (55) Kim, K.W.; Cho, P. S.; Kim, S. J.; Lee, J. H.; Kang, C. Y.; Kim, J. S.; Yoon, S. J. Sens. Actuator B-Chem. 2007, 123 (1), 318.doi: 10.1016/j.snb.2006.08.028

    56. [56]

      (56) Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P. Sens. Actuator B-Chem. 2003, 96 (3), 498. doi: 10.1016/S0925-4005(03)00624-5

    57. [57]

      (57) Dandeneau, C. S.; Jeon, Y. H.; Shelton, C. T.; Plant, T. K.; Cann, D. P.; Gibbons, B. J. Thin Solid Films 2009, 517 (15), 4448. doi: 10.1016/j.tsf.2009.01.054

    58. [58]

      (58) Vasiliev, R. B.; Rumyantseva, M. N.; Podguzova, S. E.; Ryzhikov, A. S.; Ryabova, L. I.; Gaskov, A. M. Mater. Sci. Eng. B 1999, 57 (3), 241. doi: 10.1016/S0921-5107(98)00432-2

    59. [59]

      (59) Kosc, I.; Hotovy, I.; Rehacek, V.; Griesseler, R.; Predanocy, M.; Wilke, M.; Spiess, L. Appl. Surf. Sci. 2013, 269, 110. doi: 10.1016/j.apsusc.2012.09.061

    60. [60]

      (60) Cui, G.; Gao, L.; Yao, B.; Wang, S.; Zhang, P.; Zhang, M.Electrochem. Commun. 2013, 30, 42. doi: 10.1016/j.elecom.2013.02.003

    61. [61]

      (61) Li, X. Q.; Fan, Q. F.; Li, G. L.; Huang, Y. H.; Gao, Z.; Fan, X.M.; Zhang, C. L.; Zhou, Z.W. Acta Phys. -Chim. Sin. 2015, 31(4), 783. [李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 物理化学学报, 2015, 31 (4), 783.] doi: 10.3866/PKU.WHXB201502062

    62. [62]

      (62) Zhang, J. F.; Wang, Y.; Shen, T. K.; Shu, X.; Cui, J.W.; Chen, Z.; Wu, Y. C. Acta Phys. -Chim. Sin. 2014, 30 (8), 1535. [张剑芳, 王岩, 沈天阔, 舒霞, 崔接武, 陈忠, 吴玉程. 物理化学学报, 2014, 30 (8), 1535.] doi: 10.3866/PKU.WHXB201405221

    63. [63]

      (63) Shaislamov, U.; Yang, B. L. J. Mater. Res. 2013, 28 (3), 418.doi: 10.1557/jmr.2012.373

    64. [64]

      (64) Kim, H. R.; Haensch, A.; Kim, I. D.; Barsan, N.; Weimar, U.; Lee, J. H. Adv. Funct. Mater. 2011, 21 (23), 4456. doi: 10.1002/adfm.201101154

    65. [65]

      (65) Lou, Z.; Deng, J.; Wang, L.; Wang, L.; Fei, T.; Zhang, T. Sens. Actuator B-Chem. 2013, 176, 323. doi: 10.1016/j.snb.2012.09.027

    66. [66]

      (66) Shuang, X. U.; Yang, Y.; Hong-Yuan, W. U.; Jiang, C.; Jing, L.Q.; Shi, K. Y. J. Inorg. Mater. 2013, 28 (6), 584.

    67. [67]

      (67) Saito, S.; Miyayama, M.; Koumoto, K.; Yanagida, H. J. Am. Ceram. Soc. 2006, 68 (1), 40.

    68. [68]

      (68) Liu, C.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Cryst Eng Comm 2015, 17, 6308. doi: 10.1039/C5CE01162K

    69. [69]

      (69) Basu, S.; Basu, P. K. J. Sensors 2009, 29 (12), 777. doi: 10.1155/2009/861968

    70. [70]

      (70) Arafat, M. M.; Dinan, B.; Akbar, S. A.; Haseeb, A. S. M. A.Sensors 2012, 12 (6), 7207. doi: 10.1002/chin.201350224

    71. [71]

      (71) Korotcenkov, G. Sens. Actuator B-Chem. 2005, 107 (1), 209.doi: 10.1016/j.snb.2004.10.006

    72. [72]

      (72) Kwak, C. H.; Woo, H. S.; Lee, J. H. Sens. Actuator B-Chem. 2014, 204, 231. doi: 10.1016/j.snb.2014.07.084

    73. [73]

      (73) Kaneti, Y. V.; Zakaria, Q. M. D.; Zhang, Z.; Chen, C.; Yue, J.; Liu, M.; Jiang, X.; Yu, A. J. Mater. Chem. A 2014, 2 (33), 13283. doi: 10.1039/C4TA01837K

    74. [74]

      (74) Choi, S.W.; Katoch, A.; Kim, J. H.; Kim, S. S. ACS Appl. Mater. Inter. 2014, 6 (20), 17723. doi: 10.1021/am504164j

    75. [75]

      (75) Shao, F.; Hoffmann, M.W. G.; Prades, J. D.; Zamani, R.; Arbiol, J.; Morante, J. R.; Varechkina, E.; Rumyantseva, M.; Gaskov, A.; Giebelhaus, I.; Fischer, T.; Mathur, S.Hernández-Ramírez, F. Sens. Actuator B-Chem. 2013, 181, 130. doi: 10.1016/j.snb.2013.01.067

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(0)
  • Abstract views(1055)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return