Citation: BIAN Shao-Wei, XU Ling-Li, GUO Mei-Xia, SHAO Fu, LIU Si. Fabrication of Graphene/Cotton and MnO2/Graphene/Cotton Composite Fabrics as Flexible Electrodes for Electrochemical Capacitors[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1199-1206. doi: 10.3866/PKU.WHXB201602222
-
Graphene/cotton composite fabrics for use as flexible electrodes were prepared using a thermal reduction method. The reducing condition significantly influenced the conductivity of the graphene/cotton fabrics. The conductive graphene/cotton fabrics with hierarchical structures used as flexible electrode substrates facilitate the loading of pseudocapacitor materials, enhancing electron transport and electrolyte ion diffusion. The electrode structure was characterized in detail using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and the standard four-point probe method. After further electrochemical deposition of MnO2 sheets on the composite fabrics, the resulting MnO2/graphene/cotton composite fabrics for use as electrode materials had excellent electrochemical performance and great flexibility. The specific capacitance reached 536 F·g-1 at a scan rate of 5 mV·s-1. The electrochemical test results indicate that it can be further used for flexible energy storage materials.
-
Keywords:
- Graphene,
- Cotton,
- Electrochemical capacitor,
- Flexible electrode,
- Textile
-
-
[1]
(1) Xue, J. L.; Zhao, Y.; Cheng, H. H.; Hu, C. G.; Hu, Y.; Meng, Y. N.; Shao, H. B.; Zhang, Z. P.; Qu, L. T. Phys. Chem. Chem. Phys. 2013, 15, 8042. doi: 10.1039/c3cp51571k
-
[2]
(2) Bian, S.W.; Zhu, L. RSC Adv. 2013, 3, 4212. doi: 10.1039/c3ra40333e
-
[3]
(3) Xu, L. L.; Bian, S.W.; Song, K. L. J. Mater. Sci. 2014, 49, 6217. doi: 10.1007/s10853-014-8346-5
-
[4]
(4) Jiang, H.; Lee, P. S.; Li, C. Z. Energy Environ. Sci. 2013, 6, 41. doi: 10.1039/c2ee23284g
-
[5]
(5) Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Adv. Mater. 2012, 24, 4569. doi: 10.1002/adma.201201978
-
[6]
(6) Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Nano Lett. 2010, 10, 4025. doi: 10.1021/nl1019672
-
[7]
(7) Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Nature Nanotech. 2010, 5, 651. doi: 10.1038/nnano.2010.162
-
[8]
(8) Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z.W.; Hauge, R. H.; Natelson, D.; Tour, J. M. Nano Lett. 2013, 13, 72. doi: 10.1021/nl3034976
-
[9]
(9) Bian, S.W.; Zhao, Y. P.; Xian, C. Y. Mater. Lett. 2013, 111, 75. doi: 10.1016/j.matlet.2013.08.028
-
[10]
(10) Xu, L. L.; Guo, M. X.; Liu, S.; Bian, S.W. RSC Adv. 2015, 5, 25244. doi: 10.1039/c4ra16063k
-
[11]
(11) Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625
-
[12]
(12) Simon, P.; Gogotsi, Y. Nature Mater. 2008, 7, 845. doi: 10.1038/nmat2297
-
[13]
(13) Wang, Y. F.; Zuo, S. L. Acta Phys. -Chim. Sin. 2016, 32, 481. [王永芳, 左宋林. 物理化学学报, 2016, 32, 481.] doi: 10.3866/PKU.WHXB201511041
-
[14]
(14) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221
-
[15]
(15) Liang, G.; Zhu, L.; Xu, J.; Fang, D.; Bai, Z.; Xu, W. Electrochim. Acta 2013, 103, 9. doi: 10.1016/j.electacta.2013.04.065
-
[16]
(16) Xin, C.; Ming, P.; Xiao, Y.; Yongping, F.; Dechun, Z. J. Mater. Chem. C 2013, 2, 1184. doi: 10.1039/c3tc31706d
-
[17]
(17) Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Angew. Chem. Int. Edit. 2012, 51, 11371. doi: 10.1002/anie.201206554
-
[18]
(18) Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Energy Environ. Sci. 2011, 4, 5060. doi: 10.1039/c1ee02421c
-
[19]
(19) Hu, L. B.; Chen, W.; Xie, X.; Liu, N. A.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. ACS Nano 2011, 5, 8904. doi: 10.1021/nn203085j
-
[20]
(20) Lu, Z.; Mao, C.; Zhang, H. J. Mater. Chem. C 2015, 3, 4265. doi: 10.1039/c5tc00917k
-
[21]
(21) Shateri-Khalilabad, M.; Yazdanshenas, M. Cellulose 2013, 20, 963. doi: 10.1007/s10570-013-9873-y
-
[22]
(22) Sun, X.; Wang, H.; Lei, Z.; Liu, Z.; Wei, L. RSC Adv. 2014, 4, 30233. doi: 10.1039/c4ra03983a
-
[23]
(23) Hassan, S.; Suzuki, M.; Mori, S.; El-Moneim, A. A. RSC Adv. 2014, 4, 20479. doi: 10.1039/c4ra01132e
-
[24]
(24) Chen, W.; Rakhi, R. B.; Hu, L. B.; Xie, X.; Cui, Y.; Alshareef, H. N. Nano Lett. 2011, 11, 5165. doi: 10.1021/nl2023433
-
[25]
(25) Li, C. C.; Yu, H.; Yan, Q.; Hng, H. H. J. Power Sources 2015, 274, 310. doi: 10.1016/j.jpowsour.2014.10.056
-
[26]
(26) Hongtao, L.; Lei, Z.; Yunlong, G.; Cheng, C.; Lianjiang, Y.; Lang, J.; Gui, Y.; Wenping, H.; Yungi, L.; Daoben, Z. J. Mater. Chem. C 2013, 1, 3104. doi: 10.1039/c3tc00067b
-
[27]
(27) Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Carbon 2010, 48, 4466. doi: 10.1016/j.carbon.2010.08.006
-
[28]
(28) Szabo, T.; Berkesi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dekany, I. Chem. Mater. 2006, 18, 2740. doi: 10.1021/cm060258
-
[29]
(29) Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Adv. Funct. Mater. 2009, 19, 1987. doi: 10.1002/adfm.200900167
-
[30]
(30) Zhu, J.; Tang, S.; Xie, H.; Dai, Y.; Meng, X. ACS Appl. Mater. Interfaces 2014, 6, 17637. doi: 10.1021/am505622c
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[3]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[4]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[8]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[9]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[10]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[11]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[12]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[13]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[14]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[15]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[16]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[17]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[18]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[19]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[20]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(801)
- HTML views(68)