Citation:
BIAN Shao-Wei, XU Ling-Li, GUO Mei-Xia, SHAO Fu, LIU Si. Fabrication of Graphene/Cotton and MnO2/Graphene/Cotton Composite Fabrics as Flexible Electrodes for Electrochemical Capacitors[J]. Acta Physico-Chimica Sinica,
;2016, 32(5): 1199-1206.
doi:
10.3866/PKU.WHXB201602222
-
Graphene/cotton composite fabrics for use as flexible electrodes were prepared using a thermal reduction method. The reducing condition significantly influenced the conductivity of the graphene/cotton fabrics. The conductive graphene/cotton fabrics with hierarchical structures used as flexible electrode substrates facilitate the loading of pseudocapacitor materials, enhancing electron transport and electrolyte ion diffusion. The electrode structure was characterized in detail using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and the standard four-point probe method. After further electrochemical deposition of MnO2 sheets on the composite fabrics, the resulting MnO2/graphene/cotton composite fabrics for use as electrode materials had excellent electrochemical performance and great flexibility. The specific capacitance reached 536 F·g-1 at a scan rate of 5 mV·s-1. The electrochemical test results indicate that it can be further used for flexible energy storage materials.
-
Keywords:
- Graphene,
- Cotton,
- Electrochemical capacitor,
- Flexible electrode,
- Textile
-
-
-
[1]
(1) Xue, J. L.; Zhao, Y.; Cheng, H. H.; Hu, C. G.; Hu, Y.; Meng, Y. N.; Shao, H. B.; Zhang, Z. P.; Qu, L. T. Phys. Chem. Chem. Phys. 2013, 15, 8042. doi: 10.1039/c3cp51571k
-
[2]
(2) Bian, S.W.; Zhu, L. RSC Adv. 2013, 3, 4212. doi: 10.1039/c3ra40333e
-
[3]
(3) Xu, L. L.; Bian, S.W.; Song, K. L. J. Mater. Sci. 2014, 49, 6217. doi: 10.1007/s10853-014-8346-5
-
[4]
(4) Jiang, H.; Lee, P. S.; Li, C. Z. Energy Environ. Sci. 2013, 6, 41. doi: 10.1039/c2ee23284g
-
[5]
(5) Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Adv. Mater. 2012, 24, 4569. doi: 10.1002/adma.201201978
-
[6]
(6) Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Nano Lett. 2010, 10, 4025. doi: 10.1021/nl1019672
-
[7]
(7) Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Nature Nanotech. 2010, 5, 651. doi: 10.1038/nnano.2010.162
-
[8]
(8) Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z.W.; Hauge, R. H.; Natelson, D.; Tour, J. M. Nano Lett. 2013, 13, 72. doi: 10.1021/nl3034976
-
[9]
(9) Bian, S.W.; Zhao, Y. P.; Xian, C. Y. Mater. Lett. 2013, 111, 75. doi: 10.1016/j.matlet.2013.08.028
-
[10]
(10) Xu, L. L.; Guo, M. X.; Liu, S.; Bian, S.W. RSC Adv. 2015, 5, 25244. doi: 10.1039/c4ra16063k
-
[11]
(11) Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625
-
[12]
(12) Simon, P.; Gogotsi, Y. Nature Mater. 2008, 7, 845. doi: 10.1038/nmat2297
-
[13]
(13) Wang, Y. F.; Zuo, S. L. Acta Phys. -Chim. Sin. 2016, 32, 481. [王永芳, 左宋林. 物理化学学报, 2016, 32, 481.] doi: 10.3866/PKU.WHXB201511041
-
[14]
(14) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221
-
[15]
(15) Liang, G.; Zhu, L.; Xu, J.; Fang, D.; Bai, Z.; Xu, W. Electrochim. Acta 2013, 103, 9. doi: 10.1016/j.electacta.2013.04.065
-
[16]
(16) Xin, C.; Ming, P.; Xiao, Y.; Yongping, F.; Dechun, Z. J. Mater. Chem. C 2013, 2, 1184. doi: 10.1039/c3tc31706d
-
[17]
(17) Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Angew. Chem. Int. Edit. 2012, 51, 11371. doi: 10.1002/anie.201206554
-
[18]
(18) Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Energy Environ. Sci. 2011, 4, 5060. doi: 10.1039/c1ee02421c
-
[19]
(19) Hu, L. B.; Chen, W.; Xie, X.; Liu, N. A.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. ACS Nano 2011, 5, 8904. doi: 10.1021/nn203085j
-
[20]
(20) Lu, Z.; Mao, C.; Zhang, H. J. Mater. Chem. C 2015, 3, 4265. doi: 10.1039/c5tc00917k
-
[21]
(21) Shateri-Khalilabad, M.; Yazdanshenas, M. Cellulose 2013, 20, 963. doi: 10.1007/s10570-013-9873-y
-
[22]
(22) Sun, X.; Wang, H.; Lei, Z.; Liu, Z.; Wei, L. RSC Adv. 2014, 4, 30233. doi: 10.1039/c4ra03983a
-
[23]
(23) Hassan, S.; Suzuki, M.; Mori, S.; El-Moneim, A. A. RSC Adv. 2014, 4, 20479. doi: 10.1039/c4ra01132e
-
[24]
(24) Chen, W.; Rakhi, R. B.; Hu, L. B.; Xie, X.; Cui, Y.; Alshareef, H. N. Nano Lett. 2011, 11, 5165. doi: 10.1021/nl2023433
-
[25]
(25) Li, C. C.; Yu, H.; Yan, Q.; Hng, H. H. J. Power Sources 2015, 274, 310. doi: 10.1016/j.jpowsour.2014.10.056
-
[26]
(26) Hongtao, L.; Lei, Z.; Yunlong, G.; Cheng, C.; Lianjiang, Y.; Lang, J.; Gui, Y.; Wenping, H.; Yungi, L.; Daoben, Z. J. Mater. Chem. C 2013, 1, 3104. doi: 10.1039/c3tc00067b
-
[27]
(27) Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Carbon 2010, 48, 4466. doi: 10.1016/j.carbon.2010.08.006
-
[28]
(28) Szabo, T.; Berkesi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dekany, I. Chem. Mater. 2006, 18, 2740. doi: 10.1021/cm060258
-
[29]
(29) Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Adv. Funct. Mater. 2009, 19, 1987. doi: 10.1002/adfm.200900167
-
[30]
(30) Zhu, J.; Tang, S.; Xie, H.; Dai, Y.; Meng, X. ACS Appl. Mater. Interfaces 2014, 6, 17637. doi: 10.1021/am505622c
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[3]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[4]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[5]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[6]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[9]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[10]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[11]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[12]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[13]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[14]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[15]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[16]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[17]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[18]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[19]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[20]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(871)
- HTML views(74)