Citation: AN Bao-Lin, YANG Fu-Fang, YANG Zhen, DUAN Yuan-Yuan, YU Yang-Xin. Measurements of the Viscosity and Thermal Conductivity of a Gas at Definitive Thermodynamic States[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1129-1133. doi: 10.3866/PKU.WHXB201602195 shu

Measurements of the Viscosity and Thermal Conductivity of a Gas at Definitive Thermodynamic States

  • Corresponding author: DUAN Yuan-Yuan, 
  • Received Date: 31 December 2015
    Available Online: 17 February 2016

    Fund Project: 国家自然科学基金(51236004,51321002,21176132)资助项目 (51236004,51321002,21176132)

  • The gas viscosity and thermal conductivity are important fluid transport properties, and are related to thermodynamic states. Currently, the main methods to measure the viscosity and thermal conductivity require the gaseous samples to be exposed to non-stationary processes or non-equilibrium processes with gradients of the physical properties. Therefore, the gaseous samples are not located at a definitive thermodynamic state in time or space for each measurement. In this paper, a method to measure the gas viscosity and thermal conductivity at definitive thermodynamic states was studied by analyzing the dissipation of sound energy, which is controlled by the gas viscosity and thermal conductivity. This was performed using the transport theory for a dilute gas, based on the fixed path interference method with a cylindrical resonator. The results were verified by measuring the argon viscosity and thermal conductivity. The results agreed with data in the literature.
  • 加载中
    1. [1]

      (1) Li, C. P.; Li, Z.; Zou, B. X.; Liu, Q. S.; Liu, X. X. Acta Phys. -Chim. Sin. 2013, 29, 2157. [李长平, 李琢, 邹本雪, 刘青山, 刘晓霞. 物理化学学报, 2013, 29, 2157.] doi: 10.3866/PKU.WHXB201307293

    2. [2]

      (2) Lemmon, E.W.; Jacobsen, R. T. Int. J. Thermophys. 2004, 25, 21. doi: 10.1023/B: IJOT.0000022327.04529.f3

    3. [3]

      (3) Su, H. Z.; Yin, J. M.; Liu, Q. S.; Li, C. P. Acta Phys. -Chim. Sin. 2015, 31, 1468. [宿洪祯, 尹静梅, 刘青山, 李长平. 物理化学学报, 2015, 31, 1468.] doi: 10.3866/PKU.WHXB201506111

    4. [4]

      (4) Gan, Y. L.; Wang, L.; Su, X. Q.; Xu, S.W.; Kong, L.; Shen, X. Acta Phys. Sin. 2014, 63, 136502. [甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 物理学报, 2014, 63, 136502.] doi: 10.7498/aps.63.136502

    5. [5]

      (5) Wang, X. P.; Song, B.; Wu, J. T.; Liu, Z. G. J. Eng. Thermophys. 2011, 32, 365. [王晓坡, 宋渤, 吴江涛, 刘志刚. 工程热物理学报, 2011, 32, 365.]

    6. [6]

      (6) Zhang, Y.; He, M. G.; Liu, Y.; Guo, Y. J. Eng. Thermophys. 2011, 32, 9. [张颖, 何茂刚, 刘洋, 郭盈. 工程热物理学报, 2011, 32, 9.]

    7. [7]

      (7) Greenspan, M.; Wimenitz, F. N. 1953, NBS Report 2658.

    8. [8]

      (8) Xiao, B. Q. Chin. Phys. B 2013, 22, 14402. doi: 10.1088/1674-1056/22/1/014402

    9. [9]

      (9) Tian, J. P.; Yao, K. L. Chin. Phys. 2001, 10, 128. doi: 10.1088/1009-1963/10/2/309

    10. [10]

      (10) Wang, H. X.; Sun, S. R.; Chen, S. Q. Acta Phys. Sin. 2012, 61, 195203. [王海兴, 孙素蓉, 陈士强. 物理学报, 2012, 61, 195203.] doi: 10.7498/aps.61.195203

    11. [11]

      (11) Hurly, J. J.; Gillis, K. A.; Mehl, J. B.; Moldover, M. R. Int. J. Themophys. 2003, 24, 1441. doi: 10.1023/B: IJOT.0000004088.04964.4c

    12. [12]

      (12) Gillis, K. A.; Mehl, J. B.; Moldover, M. R. Acoust. Soc. Am. 2003, 114, 166. doi: 10.1121/1.1577550

    13. [13]

      (13) An, B. L.; Lin, H.; Liu, Q.; Duan, Y. Y. Acta Phys. Sin. 2013, 62, 175101. [安保林, 林鸿, 刘强, 段远源. 物理学报, 2013, 62, 175101.] doi: 10.7498/aps.62.175101

    14. [14]

      (14) An, B. L.; Liu, Q.; Duan, Y. Y. J. Eng. Thermophys. 2012, 33, 561. [安保林, 刘强, 段远源. 工程热物理学报, 2012, 33, 561.]

    15. [15]

      (15) An, B. L.; Liu, Q.; Duan, Y. Y.; Yu, Y. X. J. Eng. Thermophys. 2013, 34, 613. [安保林, 刘强, 段远源, 于养信. 工程热物理学报, 2013, 34, 613.]

    16. [16]

      (16) An, B. L.; Liu, Q.; Duan, Y. Y. J. Eng. Thermophys. 2014, 35, 1901. [安保林, 刘强, 段远源. 工程热物理学报, 2014, 35, 1901.]

    17. [17]

      (17) Zhang, J. T.; Lin, H.; Sun, J. P.; Feng, X. J.; Gillis, K. A.; Moldover, M. R. Int. J. Thermophys. 2010, 31, 1273. doi: 10.1007/s10765-010-0754-4

    18. [18]

      (18) Lin, H.; Feng, X. J.; Zhang, J. T.; Duan, Y. Y. J. Eng. Thermophys. 2012, 33, 1291. [林鸿, 冯晓娟, 张金涛, 段远源. 工程热物理学报, 2012, 33, 1291.]

    19. [19]

      (19) Trusler, J. P. M. Physical Acoustics and Metrology of Fluids; Adam Hilger: New York, 1991; pp 90-114.

    20. [20]

      (20) Zhang, J. T.; Lin, H.; Feng, X. J.; Sun, J. P.; Moldover, M. R.; Duan, Y. Y. Int. J. Thermophys. 2011, 32, 1297. doi: 10.1007/s10765-011-1001-3

    21. [21]

      (21) Feng, X. J. Precise Measurement System for Thermophysical Properties and Thermodynamic Properties for CO2/Propane Mixtures. Ph. D. Dissertation, Tsinghua University, Beijing, 2010. [冯晓娟. 高精度热物性实验系统研制与CO2/丙烷热力学性质研究[D]. 北京: 清华大学, 2010.]

    22. [22]

      (22) Feng, X. J.; Lin, H.; Liu, Q.; Zhou, M. X.; Duan, Y. Y. J. Eng. Thermophys. 2011, 32, 725. [冯晓娟, 林鸿, 刘强, 周梦夏, 段远源. 工程热物理学报, 2011, 32, 725.]

    23. [23]

      (23) Feng, X. J.; Liu, Q.; Zhou, M. X.; Lin, H.; Duan, Y. Y. J. Eng. Thermophys. 2012, 33, 7. [冯晓娟, 刘强, 周梦夏, 林鸿, 段远源. 工程热物理学报, 2012, 33, 7.]

    24. [24]

      (24) Chapman, S. Proceeding of the Royal Society of London 1916, 93, 1. doi: 10.1098/rspa.1916.0046

    25. [25]

      (25) Moldover, M. R.; Mehl, J. B.; Greenspan, M. J. Acoust. Soc. Am. 1986, 79, 253. doi: 10.1121/1.393566

  • 加载中
    1. [1]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    2. [2]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    13. [13]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    19. [19]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(0)
  • Abstract views(1003)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return