Citation: GONG Xu-Li, ZHANG Chang-Qiao, NING Peng-Ge, CAO Hong-Bin, ZHANG Yi. Solubility of NH4VO3 in NH4H2PO4-H2O and (NH4)3PO4-H2O Systems[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1134-1142. doi: 10.3866/PKU.WHXB201602194 shu

Solubility of NH4VO3 in NH4H2PO4-H2O and (NH4)3PO4-H2O Systems

  • Corresponding author: ZHANG Chang-Qiao,  NING Peng-Ge, 
  • Received Date: 26 November 2015
    Available Online: 17 February 2016

    Fund Project: 国家科技支撑计划(2015BAB02B05) (2015BAB02B05)国家重点基础研究发展规划项目(973)(2013CB632605) (973)(2013CB632605)国家自然科学基金项目(51425405)资助 (51425405)

  • The solubility of ammonium metavanadate (NH4VO3) in NH4H2PO4-H2O and (NH4)3PO4-H2O systems at T = 298.15-328.15 K was measured using the classic isothermal dissolution method. The densities and pH values of the solutions were also determined. The solubility of NH4VO3 decreased at first and then increased with increasing NH4H2PO4 or (NH4)3PO4 concentrations. This was considered to be caused by the common ionic effect, chemical reaction equilibrium and ionic activity. At T = 298.15 K, the solubility of NH4VO3 in the NH4H2PO4-H2O system was the highest, and was lower in the (NH4)3PO4-H2O system. The solubility in the (NH4)2HPO4-H2O system was the lowest. The mean ionic activity coefficients were calculated for the three phosphate solutions at C = 0.5 mol·kg-1 using the pH values and dissolution reaction constant. The mean ionic activity coefficients were the largest for the (NH4)2HPO4-H2O system, and were smaller for the (NH4)3PO4-H2O system. The mean ionic activity coefficients were the smallest for the NH4H2PO4-H2O system, which agrees with the solubility variations of NH4VO3 in the three phosphate systems.

    1. [1]

      (1) Moskalyk, R. R.; Alfantazi, A. M. Minerals Engineering 2003, 16, 793. doi: 10.1016/S0892-6875(03)00213-9

    2. [2]

      (2) Li, W.; Zhang, Y. M.; Liu, T.; Huang, J.; Wang, Y. Hydrometallurgy 2013, 131, 1. doi: 10.1016/j.hydromet.2012.09.009

    3. [3]

      (3) Li, Y.; Zhang, T. T.; Li, Y.; Jia, B.; Tan, H. H.; Yu, J. Acta Phys. -Chim. Sin. 2015, 31, 1541. [李燕, 张婷婷, 李悦, 贾冰, 谭铧铧, 余江. 物理化学学报, 2015, 31, 1541.] doi: 10.3866/PKU.WHXB201505261

    4. [4]

      (4) Sun, X. F.; Xu, Y. L.; Zheng, X. Y.; Meng, X. F.; Ding, P.; Ren, H.; Li, L. Acta Phys. -Chim. Sin. 2015, 31, 1513. [孙孝飞, 徐友龙, 郑晓玉, 孟祥飞, 丁朋, 任航, 李龙. 物理化学学报, 2015, 31, 1513.] doi: 10.3866/PKU.WHXB201506082

    5. [5]

      (5) Gong, Q.; Wang, H.; Liao, X. Z.; Ma, W.; He, Y. S.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28, 100. [龚强, 王红, 廖小珍, 麻微, 何雨石, 马紫峰. 物理化学学报, 2012, 28, 100.] doi: 10.3866/PKU.WHXB201228100

    6. [6]

      (6) Yuan, Z. H.; Ma, J.; Chen, X.; Liu, K. Y. Acta Phys. -Chim. Sin. 2012, 28, 2898. [元志红, 马珺, 陈星, 刘开宇. 物理化学学报, 2012, 28, 2898.] doi: 10.3866/PKU.WHXB201209253

    7. [7]

      (7) Kim, H. I.; Lee, K.W.; Mishra, D.; Yi, K. M.; Hong, J. H.; Jun, M. K.; Park, H. K. J. Ind. Eng. Chem. 2014, 20, 4457. doi: 10.1016/j.jiec.2014.02.017

    8. [8]

      (8) Hu, G. P.; Chen, D. S.; Wang, L. N.; Liu, J. C.; Zhao, H. X.; Liu, Y. H.; Qi, T.; Zhang, C. Q.; Yu, P. Sep. Purif. Technol. 2014, 125, 59. doi: 10.1016/j.seppur.2014.01.031

    9. [9]

      (9) Liu, J.; Zhao, Z.; Wang, H. X.; Duan, A. J.; Jiang, G. Y. Acta Phys. -Chim. Sin. 2011, 27, 2659. [刘坚, 赵震, 王宏宣, 段爱军, 姜桂元. 物理化学学报, 2011, 27, 2659.] doi: 10.3866/PKU.WHXB20111108

    10. [10]

      (10) Tavakoli, M. R.; Dreisinger, D. B. Hydrometallurgy 2014, 141, 17. doi: 10.1016/j.hydromet.2013.10.008

    11. [11]

      (11) Zhang, Y. M.; Bao, S. X.; Liu, T.; Chen, T. J.; Huang, J. Hydrometallurgy 2011, 109, 116. doi: 10.1016/j.hydromet.2011.06.002

    12. [12]

      (12) Liu, F.; Ning, P. G.; Cao, H. B.; Li, Z. B.; Zhang, Y. J. Chem. Eng. Data 2013, 58, 1321. doi: 10.1021/je4000873

    13. [13]

      (13) Chen, J. Y. Handbook of hydrometallurgy, 1st ed.; Metallurgical Industry Press: Beijing, 2005; pp 944-946. [陈家镛. 湿法冶金手册. 北京: 冶金工业出版社. 2005: 944-946.]

    14. [14]

      (14) Trypuć, M.; Kielkowska, U. J. Chem. Eng. Data 1997, 42, 523. doi: 10.1021/je960339u

    15. [15]

      (15) Trypuć, M.; Stefanowicz, D. I. J. Chem. Eng. Data 1997, 42, 1140. doi: 10.1021/je970109v

    16. [16]

      (16) Trypuć, M.; Kielkowska, U. J. Chem. Eng. Data 1996, 41, 1005. doi: 10.1021/je950290c

    17. [17]

      (17) Trypuć, M.; Bialowicz, K. J. Chem. Eng. Data 1997, 42, 318. doi: 10.1021/je960259q

    18. [18]

      (18) Trypuć, M.; Bialowicz, K. J. Chem. Eng. Data 2000, 45, 492. doi: 10.1021/je9901942

    19. [19]

      (19) Trypuć, M.; Mazurek, K.; Bialowicz, K. Fluid Phase Equilib. 2002, 203, 285. doi: 10.1016/S0378-3812(02)00189-9

    20. [20]

      (20) Trypuć, M.; Lyjak, G. J. Chem. Eng. Data 2000, 45, 872. doi: 10.1021/je000091f

    21. [21]

      (21) Trypuć, M.; Druzynksi, S. Ind. Eng. Chem. Res. 2009, 48, 5058. doi: 10.1021/ie801341j

    22. [22]

      (22) Trypuć, M.; Kielkowska, S. Fluid Phase Equilib. 2005, 230, 99. doi: 10.1016/j.fluid.2004.11.027

    23. [23]

      (23) Trypuć, M.; Druzynksi, S. Ind. Eng. Chem. Res. 2009, 48, 6937. doi: 10.1021/ie9004139

    24. [24]

      (24) Trypuć, M.; Druzynksi, S. J. Chem. Eng. Data 2011, 56, 2919. doi: 10.1021/je200131d

    25. [25]

      (25) Zhao, C.; Feng, M.; Wang, S. N.; Du, H.; Zheng, S. L.; Xie, H. Chem. Ind. Eng. Prog. 2014, 33, 1408. [赵楚, 冯曼, 王少娜, 杜浩, 郑诗礼, 谢华. 化工进展, 2014, 33, 1408.]

    26. [26]

      (26) Druzynski, S.; Mazurek, K.; Kiełkowska, U.; Szalla, A.; Wróbel, A. Fluid Phase Equilib. 2015, 404, 75. doi: 10.1016/j.fluid.2015.06.036

    27. [27]

      (27) Feng, M.; Wang, S. N.; Du, H.; Zheng, S. L.; Zhang.Y. Fluid Phase Equilib. 2016, 409, 119. doi: 10.1016/j.fluid.2015.08.018

    28. [28]

      (28) Gong, X. L.; Ning, P. G.; Cao, H. B.; Zhang, C. Q. J. Chem. Eng. Data 2016, 61, 628. doi: 10.1021/acs.jced.5b00780

    29. [29]

      (29) Shock, E. L.; Sassani, D. C.; Willis, M.; Sverjensky, D. A. Geochim. Cosmochim. Acta 1997, 61, 907. doi: 10.1016/S0016-7037(96)00339-0

    30. [30]

      (30) Shock, E. L.; Helgeson, H. C. Geochim. Cosmochim. Acta 1988, 52, 2009. doi: 10.1016/0016-7037(88)90181-0

    31. [31]

      (31) Shock, E. L.; Helgeson, H. C.; Sverjensky, D. A. Geochim. Cosmochim. Acta 1989, 53, 2157. doi: 10.1016/0016-7037(89)90341-4

    32. [32]

      (32) Weast, R. C.; Astle, M. J. CRC Handbook of Chemistry and Physics, 60th ed.; CRC Press: Boca Raton, FL, 1980.

    33. [33]

      (33) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances, 4th ed.; Hemisphere Publishing Corporation: New York, 1989.

    34. [34]

      (34) Li, Y. G. Thermodynamics of Metal Solvent Extraction; Tsinghua University Press: Beijing, 1988; pp 105-108. [李以圭. 金属溶剂萃取热力学. 北京: 清华大学出版社, 1988: 105-108.]

    35. [35]

      (35) Li, Y. G.; Lu, J. F. Electrolyte Solution Theories; Tsinghua University Press: Beijing, 2005; pp 67-68. [李以圭, 陆九芳.电解质溶液理论. 北京: 清华大学出版社, 2005: 67-68.]

    36. [36]

      (36) Liu, F.; Ning, P. G.; Cao, H. B.; Zhang, Y. J. Chem. Thermodyn. 2015, 80, 13. doi: 10.1016/j.jct.2014.08.011

    1. [1]

      (1) Moskalyk, R. R.; Alfantazi, A. M. Minerals Engineering 2003, 16, 793. doi: 10.1016/S0892-6875(03)00213-9

    2. [2]

      (2) Li, W.; Zhang, Y. M.; Liu, T.; Huang, J.; Wang, Y. Hydrometallurgy 2013, 131, 1. doi: 10.1016/j.hydromet.2012.09.009

    3. [3]

      (3) Li, Y.; Zhang, T. T.; Li, Y.; Jia, B.; Tan, H. H.; Yu, J. Acta Phys. -Chim. Sin. 2015, 31, 1541. [李燕, 张婷婷, 李悦, 贾冰, 谭铧铧, 余江. 物理化学学报, 2015, 31, 1541.] doi: 10.3866/PKU.WHXB201505261

    4. [4]

      (4) Sun, X. F.; Xu, Y. L.; Zheng, X. Y.; Meng, X. F.; Ding, P.; Ren, H.; Li, L. Acta Phys. -Chim. Sin. 2015, 31, 1513. [孙孝飞, 徐友龙, 郑晓玉, 孟祥飞, 丁朋, 任航, 李龙. 物理化学学报, 2015, 31, 1513.] doi: 10.3866/PKU.WHXB201506082

    5. [5]

      (5) Gong, Q.; Wang, H.; Liao, X. Z.; Ma, W.; He, Y. S.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28, 100. [龚强, 王红, 廖小珍, 麻微, 何雨石, 马紫峰. 物理化学学报, 2012, 28, 100.] doi: 10.3866/PKU.WHXB201228100

    6. [6]

      (6) Yuan, Z. H.; Ma, J.; Chen, X.; Liu, K. Y. Acta Phys. -Chim. Sin. 2012, 28, 2898. [元志红, 马珺, 陈星, 刘开宇. 物理化学学报, 2012, 28, 2898.] doi: 10.3866/PKU.WHXB201209253

    7. [7]

      (7) Kim, H. I.; Lee, K.W.; Mishra, D.; Yi, K. M.; Hong, J. H.; Jun, M. K.; Park, H. K. J. Ind. Eng. Chem. 2014, 20, 4457. doi: 10.1016/j.jiec.2014.02.017

    8. [8]

      (8) Hu, G. P.; Chen, D. S.; Wang, L. N.; Liu, J. C.; Zhao, H. X.; Liu, Y. H.; Qi, T.; Zhang, C. Q.; Yu, P. Sep. Purif. Technol. 2014, 125, 59. doi: 10.1016/j.seppur.2014.01.031

    9. [9]

      (9) Liu, J.; Zhao, Z.; Wang, H. X.; Duan, A. J.; Jiang, G. Y. Acta Phys. -Chim. Sin. 2011, 27, 2659. [刘坚, 赵震, 王宏宣, 段爱军, 姜桂元. 物理化学学报, 2011, 27, 2659.] doi: 10.3866/PKU.WHXB20111108

    10. [10]

      (10) Tavakoli, M. R.; Dreisinger, D. B. Hydrometallurgy 2014, 141, 17. doi: 10.1016/j.hydromet.2013.10.008

    11. [11]

      (11) Zhang, Y. M.; Bao, S. X.; Liu, T.; Chen, T. J.; Huang, J. Hydrometallurgy 2011, 109, 116. doi: 10.1016/j.hydromet.2011.06.002

    12. [12]

      (12) Liu, F.; Ning, P. G.; Cao, H. B.; Li, Z. B.; Zhang, Y. J. Chem. Eng. Data 2013, 58, 1321. doi: 10.1021/je4000873

    13. [13]

      (13) Chen, J. Y. Handbook of hydrometallurgy, 1st ed.; Metallurgical Industry Press: Beijing, 2005; pp 944-946. [陈家镛. 湿法冶金手册. 北京: 冶金工业出版社. 2005: 944-946.]

    14. [14]

      (14) Trypuć, M.; Kielkowska, U. J. Chem. Eng. Data 1997, 42, 523. doi: 10.1021/je960339u

    15. [15]

      (15) Trypuć, M.; Stefanowicz, D. I. J. Chem. Eng. Data 1997, 42, 1140. doi: 10.1021/je970109v

    16. [16]

      (16) Trypuć, M.; Kielkowska, U. J. Chem. Eng. Data 1996, 41, 1005. doi: 10.1021/je950290c

    17. [17]

      (17) Trypuć, M.; Bialowicz, K. J. Chem. Eng. Data 1997, 42, 318. doi: 10.1021/je960259q

    18. [18]

      (18) Trypuć, M.; Bialowicz, K. J. Chem. Eng. Data 2000, 45, 492. doi: 10.1021/je9901942

    19. [19]

      (19) Trypuć, M.; Mazurek, K.; Bialowicz, K. Fluid Phase Equilib. 2002, 203, 285. doi: 10.1016/S0378-3812(02)00189-9

    20. [20]

      (20) Trypuć, M.; Lyjak, G. J. Chem. Eng. Data 2000, 45, 872. doi: 10.1021/je000091f

    21. [21]

      (21) Trypuć, M.; Druzynksi, S. Ind. Eng. Chem. Res. 2009, 48, 5058. doi: 10.1021/ie801341j

    22. [22]

      (22) Trypuć, M.; Kielkowska, S. Fluid Phase Equilib. 2005, 230, 99. doi: 10.1016/j.fluid.2004.11.027

    23. [23]

      (23) Trypuć, M.; Druzynksi, S. Ind. Eng. Chem. Res. 2009, 48, 6937. doi: 10.1021/ie9004139

    24. [24]

      (24) Trypuć, M.; Druzynksi, S. J. Chem. Eng. Data 2011, 56, 2919. doi: 10.1021/je200131d

    25. [25]

      (25) Zhao, C.; Feng, M.; Wang, S. N.; Du, H.; Zheng, S. L.; Xie, H. Chem. Ind. Eng. Prog. 2014, 33, 1408. [赵楚, 冯曼, 王少娜, 杜浩, 郑诗礼, 谢华. 化工进展, 2014, 33, 1408.]

    26. [26]

      (26) Druzynski, S.; Mazurek, K.; Kiełkowska, U.; Szalla, A.; Wróbel, A. Fluid Phase Equilib. 2015, 404, 75. doi: 10.1016/j.fluid.2015.06.036

    27. [27]

      (27) Feng, M.; Wang, S. N.; Du, H.; Zheng, S. L.; Zhang.Y. Fluid Phase Equilib. 2016, 409, 119. doi: 10.1016/j.fluid.2015.08.018

    28. [28]

      (28) Gong, X. L.; Ning, P. G.; Cao, H. B.; Zhang, C. Q. J. Chem. Eng. Data 2016, 61, 628. doi: 10.1021/acs.jced.5b00780

    29. [29]

      (29) Shock, E. L.; Sassani, D. C.; Willis, M.; Sverjensky, D. A. Geochim. Cosmochim. Acta 1997, 61, 907. doi: 10.1016/S0016-7037(96)00339-0

    30. [30]

      (30) Shock, E. L.; Helgeson, H. C. Geochim. Cosmochim. Acta 1988, 52, 2009. doi: 10.1016/0016-7037(88)90181-0

    31. [31]

      (31) Shock, E. L.; Helgeson, H. C.; Sverjensky, D. A. Geochim. Cosmochim. Acta 1989, 53, 2157. doi: 10.1016/0016-7037(89)90341-4

    32. [32]

      (32) Weast, R. C.; Astle, M. J. CRC Handbook of Chemistry and Physics, 60th ed.; CRC Press: Boca Raton, FL, 1980.

    33. [33]

      (33) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances, 4th ed.; Hemisphere Publishing Corporation: New York, 1989.

    34. [34]

      (34) Li, Y. G. Thermodynamics of Metal Solvent Extraction; Tsinghua University Press: Beijing, 1988; pp 105-108. [李以圭. 金属溶剂萃取热力学. 北京: 清华大学出版社, 1988: 105-108.]

    35. [35]

      (35) Li, Y. G.; Lu, J. F. Electrolyte Solution Theories; Tsinghua University Press: Beijing, 2005; pp 67-68. [李以圭, 陆九芳.电解质溶液理论. 北京: 清华大学出版社, 2005: 67-68.]

    36. [36]

      (36) Liu, F.; Ning, P. G.; Cao, H. B.; Zhang, Y. J. Chem. Thermodyn. 2015, 80, 13. doi: 10.1016/j.jct.2014.08.011

  • 加载中
    1. [1]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    2. [2]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    3. [3]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    4. [4]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    5. [5]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    11. [11]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    16. [16]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    17. [17]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

Metrics
  • PDF Downloads(0)
  • Abstract views(869)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return