Citation: YUAN Jun-Sheng, LIU Zi-Yu, LI Fei, LI Shen-Yu. Study of the Hydrated Structure of KCl and NaCl Mixed Solutions Using X-ray Diffraction and Raman Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1143-1150. doi: 10.3866/PKU.WHXB201602184 shu

Study of the Hydrated Structure of KCl and NaCl Mixed Solutions Using X-ray Diffraction and Raman Spectroscopy

  • Corresponding author: YUAN Jun-Sheng, 
  • Received Date: 11 December 2015
    Available Online: 17 February 2016

    Fund Project: 河北省重点基础研究项目(13963103D) (13963103D)长江学者和创新团队发展计划(IRT14R14) (IRT14R14)国家科技支撑计划项目(2015BAB09B00)资助 (2015BAB09B00)

  • Research on the hydrated structure of KCl and NaCl mixed solutions with a concentration range between 0 and 26% was conducted using X-ray diffraction and Raman spectroscopy at 25 ℃. Their reduced structure functions, F(Q), and reduced pair distribution functions, G(r), obtained from X-ray diffraction indicate that compared with Na+, the hydration numbers and shell radii of the hydrated K+ ions are larger. This explains why the solubility of NaCl is higher than that of KCl at 25 ℃. According to the Raman spectroscopy, the tetrahedral hydrogen bonds of water molecules will be destroyed with the increase in KCl concentration and the decrease in NaCl concentration. The extent of the bond destruction has systematic variations; for example, increasing at first and then decreasing. These results show that the destruction of the hydrogen bond structure resulting from Na+ is more serious than from K+. Also, with the appropriate K+ content in the NaCl solution, Na+ will behave as a structure breaker instead of a structure maker, which enhances the destructiveness of the solution structure.
  • 加载中
    1. [1]

      (1) Smirnova, P. R.; Grechinb, O. V.; Trostina, V. N. Russ. J. Phys. Chem. A 2014, 88, 250. doi: 10.1134/S0036024414020253

    2. [2]

      (2) Brady, G.W.; Krause, J. T. J. Phys. Chem. 1957, 27, 304. doi: 10.1063/1.1743691

    3. [3]

      (3) Terekhova, D. S.; Ryss, A. I.; Radchenko, I. V. J. Struct. Chem. 1969, 10, 807. doi: 10.1007/BF00743973

    4. [4]

      (4) Fishkis, M. Y.; Soboleva, T. E. J. Struct. Chem. 1974, 15, 175. doi: 10.1007/BF00746552

    5. [5]

      (5) Neilson, G.W.; Skipper, N. Chem. Phys. Lett. 1985, 114, 35. doi: 10.1016/0009-2614(85)85050-8

    6. [6]

      (6) Tongraar, A.; Liedl, K. R.; Rode, B. M. J. Phys. Chem. A 1998, 102, 10340. doi: 10.1021/jp982270y

    7. [7]

      (7) Azam, S. S.; Hofer, T. S.; Randolf, B. R.; Rode, B. M. J. Phys. Chem. A 2009, 113, 1827. doi: 10.1021/jp8093462

    8. [8]

      (8) Ramaniah, L. M.; Bernasconi, M.; Parrinello, M. J. Chem. Phys. 1999, 111, 1587. doi: 10.1063/1.479418

    9. [9]

      (9) Liu, Y.; Lu, H. G.; Wu, Y. B.; Hu, T. P.; Li, Q. L. J. Chem. Phys. 2010, 132, 124503. doi: 10.1063/1.3369624

    10. [10]

      (10) Harsányi, I.; Bopp, P. A.; Vrhovšek, A.; Pusztai, L. J. Mol. Liq. 2011, 158, 61. doi: 10.1016/j.molliq.2010.10.010

    11. [11]

      (11) Gereben, O.; Pusztai, L. J. Non-Cryst. Solids 2015, 407, 213. doi: 10.1016/j.jnoncrysol.2014.08.047

    12. [12]

      (12) Mile, V.; Gereben, O.; Kohara, S.; Pusztai, L. J. Phys. Chem. B 2012, 116, 9758. doi: 10.1021/jp301595m

    13. [13]

      (13) Mile, V.; Pusztai, L.; Dominguez, H.; Pizi, O. J. Phys. Chem. B 2009, 113, 10760. doi: 10.1021/jp900092g

    14. [14]

      (14) Palinkas, G.; Radnai, T.; Hajdu, F. Zeitschrift Für Naturforschung A 1980, 35, 107. doi: 10.1515/zna-1980-0121

    15. [15]

      (15) Ohtaki, H.; Fukushima, N. J. Solution Chem. 1992, 21, 23. doi: 10.1007/BF00648978

    16. [16]

      (16) Nikologorskaya, E. L.; Kuznetsov, V. V.; Grechin, O. V.; Trostin, V. N. Russ. J. Inorg. Chem. 2000, 45, 1759. doi: 10.1134/S1070363207120043

    17. [17]

      (17) Li, F.; Han, Z.; Li, D. C.; Li, S. Y.; Yuan, J. S. Chin. J. Anal. Lab. 2014, 33, 1072. [李非, 韩镇, 李栋婵, 李申予, 袁俊生. 分析试验室, 2014, 33, 1072.] doi: 10.13595/j.cnki.issn1000-0720.2014.0253

    18. [18]

      (18) Li, F.; Yuan, J. S.; Li, D. C.; Li, S. Y.; Han, Z. J. Mol. Struct. 2015, 1081, 38. doi: 10.1016/j.molstruc.2014.09.062

    19. [19]

      (19) Juha′s, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. J. Appl. Cryst. 2013, 43, 560. doi: 10.1107/S0021889813005190

    20. [20]

      (20) Li, Q. Z.; Wu, G. S.; Yu, Z.W. J. Am. Chem. Soc. 2006, 128, 1438. doi: 10.1021/ja0569149

    21. [21]

      (21) Feng, W. S.; Fang, Y.; Xu, J. X.; Fang, C. H.; Jia, Q. J.; Wang, H. H.; Jiang, X. M. Acta Phys. -Chim. Sin. 2008, 24 (3), 497. [冯望生, 房艳, 徐继香, 房春晖, 贾全杰, 王焕华, 姜晓明. 物理化学学报, 2008, 24 (3), 497.] doi: 10.3866/PKU.WHXB20080326

    22. [22]

      (22) Fu, L. X-ray Study of the Structure of LiquidWater. Ph. D. Dissertation, Stanford University, American, 2009.

    23. [23]

      (23) Zhou, Y. Q. Structure and Properties of Aqueous Sodium Borate Solutions. Ph. D. Dissertation, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 2010. [周永全. 硼酸钠水溶液结构及性质[D]. 西宁: 中国科学院青海盐湖研究所, 2010.]

    24. [24]

      (24) Megyes, T.; Bálint, S.; Grósz, T.; Radnai, T.; Bakó, I. J. Chem. Phys. 2008, 128, 044501 doi: 10.1063/1.2821956

    25. [25]

      (25) Ohtomo, N.; Arakawa, K. Bull. Chem. Soc. Jpn. 1980, 53, 1789. doi: 10.1246/bcsj.53.1789

    26. [26]

      (26) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A. J. Phys. Chem. B 2007, 111, 13570. doi: 10.1021/jp075913v

    27. [27]

      (27) Li, F. Study on the Structure of Potassium Salt Aqueous Solutions. Ph. D. Dissertation, Hebei University of Technology, Tianjin, 2015. [李非. 钾盐水溶液结构研究[D]. 天津: 河北工业大学, 2015.]

    28. [28]

      (28) Wang, C. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2012, 28, 1823. [王陈琛, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2012, 28, 1823.] doi: 10.3866/PKU.WHXB201205154

    29. [29]

      (29) Impey, R.W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87, 5071. doi: 10.1021/j150643a008

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    10. [10]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    13. [13]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    14. [14]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(0)
  • Abstract views(968)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return