Citation: ZHENG Zhao-Lei, LÜ Zhu-Mei. Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18 with Nitric Oxide in HCCI Combustion[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1151-1160. doi: 10.3866/PKU.WHXB201602174 shu

Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18 with Nitric Oxide in HCCI Combustion

  • Corresponding author: ZHENG Zhao-Lei, 
  • Received Date: 20 November 2015
    Available Online: 29 January 2016

    Fund Project: 中央高校基本科研业务费(CDJZR13145501)资助 (CDJZR13145501)

  • A new mechanism for IC8H18 with nitric oxide (IC8H18-NO) in homogeneous charge compression ignition (HCCI) combustion is presented to investigate the effects of NO in exhaust gas recirculation (EGR) on combustion. The IC8H18 sub-mechanism consists of 112 species and 467 reactions. A NO sub-mechanism is developed through reaction path analysis. The reaction paths of NO are summarized on the basis of the detailed NO mechanism reported by Anderlohr to describe the effects of NO on IC8H18. A new IC8H18-NO mechanism with 167 species and 835 reactions is described. The IC8H18 sub-mechanism of IC8H18-NO mechanism was validated by the ignition delay times in a shock tube. Experimental and computational results are in good agreement with those of ignition delay times at 855 to 1269 K and at 2 and 6 MPa with equivalence ratios of 0.5 and 1.0. The new IC8H18-NO mechanism is also validated in an HCCI engine. Computational results are consistent with experimental data of ignition delay times at a NO concentration range of 0 to 500 × 10-6 (volume fraction). The effects of NO on IC8H18 differ as the NO concentration increases. Therefore, the effects of NO on IC8H18 are simulated using a zero-dimensional model using the CHEMKIN PRO software. Key reactions at different NO concentrations are proposed by analyzing the sensitivity and productivity rates. The resource of OH for initial IC8H18 consumption is mainly generated through R476, which occurs as a result of the promoting effect of NO reon IC8H18 consumption. The ability of NO to combine with active radicals, such as those in R476, is enhanced as the NO concentration is increased.
  • 加载中
    1. [1]

      (1) Machrafi, H. Energ. Convers. Manage. 2008, 49 (11), 2956. doi: 10.1016/j.enconman.2008.06.016

    2. [2]

      (2) Machrafi, H. Energ. Convers. Manage. 2010, 51 (10), 2025. doi: 10.1016/j.enconman.2010.02.036

    3. [3]

      (3) Machrafi, H.; Guibert, P.; Cavadias, S. Combust. Sci. Technol. 2008, 180 (7), 1245. doi: 10.1080/00102200802049380

    4. [4]

      (4) Dubreuil, A.; Foucher, F; Mounaïm-Rousselle, C.; Dayma, G.; Dagaut, P. Proc. Combust. Inst. 2007, No. 31, 2879. doi: 10.1016/j.proci.2006.07.168

    5. [5]

      (5) Fathi, M.; Saray, R. K.; Checkel, M. D. Appl. Energ. 2011, 88 (12), 4719. doi: 10.1016/j.apenergy.2011.06.017

    6. [6]

      (6) Lijima, A.; Yoshida, K.; Shoji, H.; Lee, J. T. Int. J. Automot. Techn. 2007, 8 (2), 137.

    7. [7]

      (7) Piperel, A.; Montagne, X.; Dagaut, P. SAE Tech. Pap. Ser. 2007, 2007-24-0087. doi: 10.4271/2007-24-0087

    8. [8]

      (8) Fu, J. Q.; Deng, B. L.; Wang, Y.; Yang, J.; Zhang, D. M.; Xu, Z. X.; Liu, J. P. Fuel 2014, No. 124, 102. doi: 10.1016/j.fuel.2014.01.092

    9. [9]

      (9) Kozarac, D.; Vuilleumier, D.; Saxena, S.; Dibble, R.W. Energ. Convers. Manage. 2014, No. 87, 1186. doi: 10.1016/j.enconman.2014.04.085

    10. [10]

      (10) Moréac, G.; Dagaut, P.; Roesler, J. F. Combust. Flame 2006, 145 (3), 512. doi: 10.1016/j.combustflame.2006.01.002

    11. [11]

      (11) Risberg, P.; Johansson, D.; Andrae, J.; Kalghatgi, G.; Björnbom, P.; Ångström, H. E. SAE Tech. Pap. Ser. 2006, 2006-01-0416. doi: 10.4271/2006-01-0416

    12. [12]

      (12) Dagaut, P.; Dayma, G. Combust. Flame 2005, 143 (1-2), 135. doi: 10.1016/j.combustflame.2005.06.006

    13. [13]

      (13) Bendtsen, A, B.; Glarborg, P.; Dam-Johansen, K. Combust. Sci. Technol. 2000, No. 151, 31. doi: 10.1080/00102200008924214

    14. [14]

      (14) Masurier, J. B.; Foucher, F.; Dayma, G.; Dagaut, P. Proc. Combust. Inst. 2015, No. 35, 3125. doi: 10.1016/j.proci.2006.07.168

    15. [15]

      (15) Anderlohr, J.; Cruz, A. P. D.; Bounaceur, R.; Leclerc, F. B. Modeling of NO Sensitization of IC Engines Surrogate Fuels Auto-Ignition and Combustion. 21st Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers France, Jul 23-27, 2007.

    16. [16]

      (16) Piperel, A.; Dagaut, P.; Montagne, X. Proc. Combust. Inst. 2009, No. 32, 2861. doi: 10.1016/j.proci.2008.08.004

    17. [17]

      (17) Frassoldati, A.; Faravelli, T.; Ranzi, E. Combust. Flame 2003, 135 (1-2), 97. doi: 10.1016/S0010-2180(03) 00152-4

    18. [18]

      (18) Dayma, G.; Ali, K. H.; Dagaut, P. Proc. Combust. Inst. 2007, No. 31, 411. doi: 10.1016/j.proci.2006.07.143

    19. [19]

      (19) Contino, F.; Foucher, F.; Dagaut, P.; Lucchini, T.; D′Errico, G.; Mounaim-Rousselle, C. Combust. Flame 2013, 160 (8), 1476. doi: 10.1016/j.combustflame.2013.02.028

    20. [20]

      (20) Faravelli, T.; Frassoldati, A.; Ranzi, E. Combust. Flame 2003, 132 (1-2), 188. doi: 10.1016/S0010-2180(02) 00437-6

    21. [21]

      (21) Anderlohr, J. M.; Bounaceur, R.; Cruz, A. P. D.; Leclerc, F. B. Combust. Flame 2009, 156 (2), 505. doi: 10.1016/j.combustflame.2008.09.009

    22. [22]

      (22) Wang, Y.; Zheng, Z. L.; He, Z.W.; Zhang, Q. F.; Wang, F. Energy Sources 2015, 37 (9), 997. doi: 10.1080/15567036.2011.601789

    23. [23]

      (23) Wang, Y. An Experimental Investigation and Numerical Simulation about Effect of Nitric Oxide on HCCI Combustion. Ph. D. Dissertation, Chongqing University, Chongqing, 2012. [王迎. 一氧化氮对均质压燃燃烧影响的试验研究与数值模拟[D]. 重庆: 重庆大学, 2012.]

    24. [24]

      (24) Glaude, P. A.; Marinov, N.; Matsungaga, N.; Hori, M. Energy Fuels 2005, No. 19, 1839. doi: 10.1021/ef050047b

    25. [25]

      (25) Andrae, J. C. Energy Fuels 2013, 27 (11), 7098. doi: 10.1021/ef401666c

    26. [26]

      (26) Dayma, G.; Dagaut, P. Experimental and Kinetic Modeling Study of the Impact of NO and NO2 on the Oxidation of a Primary Reference Fuels Mixture. Proceedings of the European Combustion Meeting, Vienna Austria, Apr 14-17, 2009.

    27. [27]

      (27) Kelley, A. P.; Liu, W.; Xin, Y. X.; Smallbone, A. J.; Law, C. K. Proc. Combust. Inst. 2011, 33 (1), 501. doi: 10.1016/j.proci.2010.05.058

    28. [28]

      (28) Curran, H. J.; Gaffuri, P.; Pitz, W. J.; Westbrook, C. K. Combust. Flame 2002, 129 (3), 253. doi: 10.1016/S0010-2180(01)00373-X

    29. [29]

      (29) Chaos, M.; Kazakov, A.; Zhao, Z.; Dryer, F. L. Int. J. Chem. Kinet. 2007, 39 (7), 399. doi: 10.1002/kin.v39:7

    30. [30]

      (30) Davidson, D. F.; Gauthier, B. M.; Hanson, R. K. Proc. Combust. Inst. 2005, 30 (1), 1175. doi: 10.1016/j.proci.2004.08.004

    31. [31]

      (31) http://www.me.berkeley.edu/gri_mech/ (accessed Feb 25, 2014).

  • 加载中
    1. [1]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    2. [2]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    14. [14]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(0)
  • Abstract views(870)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return