Citation: XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 1029-1035. doi: 10.3866/PKU.WHXB201601292 shu

Contact Resistance Effects in Carbon Nanotube Thin Film Transistors

  • Corresponding author: LIANG Xue-Lei, 
  • Received Date: 11 December 2015
    Available Online: 29 January 2016

    Fund Project: 国家自然科学基金(61321001) (61321001) 北京市科学技术委员会(Z141100003814006) (Z141100003814006) 教育部(113003A)资助项目 (113003A)

  • The contact resistance effect in the network type carbon nanotube thin film transistors (CNT-TFTs) is studied by using different contact metals. It is shown that palladium (Pd) can form an ohmic type contact with the carbon nanotube thin film, and gold (Au) forms an almost ohmic contact. On-state current and carrier mobility in the devices of these two contacts are high. In contrast, both titanium (Ti) and aluminum (Al) form Schottkytype contacts with the carbon nanotube thin film. The barrier height and the contact resistance of the Al contact are higher than those of the Ti contact. Therefore, the on-state current and carrier mobility are relatively low in the corresponding devices of these two types of contacts. These results indicate that the performance of CNTTFTs can be tuned by the contact metal, which is important for the commercialization of CNT-TFTs.
  • 
    1. [1]

      (1) Che, Y.; Chen, H.; Gui, H.; Liu, J.; Liu, B.; Zhou, C. Semicond. Sci. Tech. 2014, 29 (7), 073001. doi: 10.1088/0268-1242/29/7/073001

    2. [2]

      (2) Wang, C.; Zhang, J.; Ryu, K.; Badmaey, A.; De Arco, L.G.; Zhou, C. Nano Lett. 2009, 9 (12), 4285. doi: 10.1021/nl902522f

    3. [3]

      (3) Zhang, J.; Fu, Y.;Wang, C.; Chen, P.; Liu, Z.;Wei, W.;Wu, C.; Thompson, M.; Zhou, C. Nano Lett. 2011, 11 (11), 4852. doi: 10.1021/nl202695v

    4. [4]

      (4) Park, S.; Vosguerichian, M.; Bao, Z. Nanoscale 2013, 5 (5), 1727. doi: 10.1039/C3NR33560G

    5. [5]

      (5) Alam, M.; Pimparkar, N.; Kumar, S.; Murthy, J. MRS Bull. 2006, 31 (6), 466. doi : 10.1557/mrs2006.120.

    6. [6]

      (6) Hersam, M. Nat. Nanotechnol. 2008, 3 (7), 387. doi: 10.1038/nnano.2008.135

    7. [7]

      (7) Arnold, M.; Green, A.; Hulvat, J.; Stupp, S.; Hersam, M. Nat. Nanotechnol. 2006, 1 (1), 60. doi: 10.1038/nnano.2006.52

    8. [8]

      (8) Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460 (7252), 250. doi: 10.1038/nature08116

    9. [9]

      (9) Kim, K.; Yoon, S.; Choi, J.; Lee, J.; Kim, B.; Kim, J.; Lee, J.; Paik, U.; Park, M.; Yang, C.; An, K.; Chung, Y.; Lee, Y. Adv. Funct. Mater. 2007, 17 (11), 1775. doi: 10.1002/adfm.200600915

    10. [10]

      (10) Gomulya, W.; Costanzo, G.; Carbalho, E.; Bisri, S.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S.; Santos, M.; Scherf, U.; Loi, M. Adv. Mater. 2013, 25 (21), 2948. doi: 10.1002/adma.201300267

    11. [11]

      (11) Wang, H.; Mei, J.; Liu, P.; Schmidt, K.; Jimenez-oses, G.; Osuna, A.; Fang, L.; Tassone, C.; Zoombelt, A.; Sokolov, A.; Houk, K.; Toney, M.; Bao, Z. ACS Nano 2013, 7 (3), 2659. doi: 10.1021/nn4000435

    12. [12]

      (12) Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313

    13. [13]

      (13) Liang, S.; Zhao, Y.; Adronov, A. J. Am. Chem. Soc. 2014, 136 (3), 970. doi: 10.1021/ja409918n

    14. [14]

      (14) Wang, C.; Zhang, J.; Zhou, C. ACS Nano 2010, 4 (12), 7123. doi: 10.1021/nn1021378

    15. [15]

      (15) Chen, P.; Fu, Y.; Aminirad, R.;Wang, C.; Zhang, J.;Wang, K.; Galatsis, K.; Zhou, C. Nano Lett. 2011, 11 (12), 5301. doi: 10.1021/nl202765b

    16. [16]

      (16) Liu, B.;Wang, C.; Liu, J.; Che, Y.; Zhou, C. Nanoscale 2013, 5 (20), 9483. doi: 10.1039/C3NR02595K

    17. [17]

      (17) Cao, X.; Chen, H.; Gu, X.; Liu, B.;Wang, W.; Cao, Y.;Wu, F.; Zhou, C. ACS Nano 2014, 8 (12), 12769. doi: 10.1021/nn505979j

    18. [18]

      (18) Wang, C.; Chien, J.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A.; Javey, A. Nano Lett. 2012, 12 (3), 1527. doi: 10.1021/nl2043375

    19. [19]

      (19) Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Chem. Soc. Rev. 2013, 42, 2592. doi: 10.1039/C2CS35325C

    20. [20]

      (20) Zou, H. L.; Yang, Y. L.;Wu, B.; Qing, Q.W.; Li, Q.; Zhang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2002, 18 (5), 409. [邹红玲, 杨延莲, 武斌, 卿泉, 李清文, 张锦, 刘忠范. 物理化学学报, 2002, 18 (5), 409.] doi: 10.3866/PKU.WHXB20020506

    21. [21]

      (21) Tewari, A.; Gandla, S.; Rininti, A.; Karuppasam, K.; Bohm, S.; Bhattacharyya, A.; McNeill, C.; Gupta, D. Appl. Phys. Lett. 2015, 107 (10), 103302. doi: 10.1063/1.4930305

    22. [22]

      (22) Bae, S.; Oh, S.; Park, L.; Choi, S.; Moon, K. J. Korean Phys. Soc. 2002, 41 (6), 1063. doi: 10.3938.jkps.41.1063

    23. [23]

      (23) Choi, S.; Bennett, P.; Lee, D.; Bokor, J. Nano Research 2015, 8 (4), 1320. doi: 10.1007/s12274-014-0623-8

    24. [24]

      (24) Ha, T.; Chen, K.; Chuang, S.; Yu, K.; Kiriya, D.; Javey, A. Nano Lett. 2015, 15, 392. doi: 10.1021/nl5037098

    25. [25]

      (25) Javey, A.; Guo, J.;Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424 (6949), 654. doi: 10.1038/nature01797

    26. [26]

      (26) Zhang, Z.; Liang, X.;Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; ZhouW.; Li, Y.; Yao, Y.; Zhang, J.; Peng, L. Nano Lett. 2007, 7 (12), 3603. doi: 10.1021/nl0717107

    27. [27]

      (27) Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.; Avouris, P. Nano Lett. 2005, 5 (7), 1497. doi: 10.1021/nl0508624

    28. [28]

      (28) Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2002, 89 (10), 106801. doi: 10.1103/PhysRevLett.89.106801

    29. [29]

      (29) Neamen, D. Semiconductor Physics and Devices: Basic Principles, 3rd ed.; Tsinghua University, Beijing, 2003.

    30. [30]

      (30) Cao, Q.; Xia, M.; Kocabas, C.; Shim, M.; Rogers, J.; Rotkin, S. Appl. Phys. Lett. 2007, 90 (2), 023516. doi: 10.1063/1.2431465

    1. [1]

      (1) Che, Y.; Chen, H.; Gui, H.; Liu, J.; Liu, B.; Zhou, C. Semicond. Sci. Tech. 2014, 29 (7), 073001. doi: 10.1088/0268-1242/29/7/073001

    2. [2]

      (2) Wang, C.; Zhang, J.; Ryu, K.; Badmaey, A.; De Arco, L.G.; Zhou, C. Nano Lett. 2009, 9 (12), 4285. doi: 10.1021/nl902522f

    3. [3]

      (3) Zhang, J.; Fu, Y.;Wang, C.; Chen, P.; Liu, Z.;Wei, W.;Wu, C.; Thompson, M.; Zhou, C. Nano Lett. 2011, 11 (11), 4852. doi: 10.1021/nl202695v

    4. [4]

      (4) Park, S.; Vosguerichian, M.; Bao, Z. Nanoscale 2013, 5 (5), 1727. doi: 10.1039/C3NR33560G

    5. [5]

      (5) Alam, M.; Pimparkar, N.; Kumar, S.; Murthy, J. MRS Bull. 2006, 31 (6), 466. doi : 10.1557/mrs2006.120.

    6. [6]

      (6) Hersam, M. Nat. Nanotechnol. 2008, 3 (7), 387. doi: 10.1038/nnano.2008.135

    7. [7]

      (7) Arnold, M.; Green, A.; Hulvat, J.; Stupp, S.; Hersam, M. Nat. Nanotechnol. 2006, 1 (1), 60. doi: 10.1038/nnano.2006.52

    8. [8]

      (8) Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460 (7252), 250. doi: 10.1038/nature08116

    9. [9]

      (9) Kim, K.; Yoon, S.; Choi, J.; Lee, J.; Kim, B.; Kim, J.; Lee, J.; Paik, U.; Park, M.; Yang, C.; An, K.; Chung, Y.; Lee, Y. Adv. Funct. Mater. 2007, 17 (11), 1775. doi: 10.1002/adfm.200600915

    10. [10]

      (10) Gomulya, W.; Costanzo, G.; Carbalho, E.; Bisri, S.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S.; Santos, M.; Scherf, U.; Loi, M. Adv. Mater. 2013, 25 (21), 2948. doi: 10.1002/adma.201300267

    11. [11]

      (11) Wang, H.; Mei, J.; Liu, P.; Schmidt, K.; Jimenez-oses, G.; Osuna, A.; Fang, L.; Tassone, C.; Zoombelt, A.; Sokolov, A.; Houk, K.; Toney, M.; Bao, Z. ACS Nano 2013, 7 (3), 2659. doi: 10.1021/nn4000435

    12. [12]

      (12) Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313

    13. [13]

      (13) Liang, S.; Zhao, Y.; Adronov, A. J. Am. Chem. Soc. 2014, 136 (3), 970. doi: 10.1021/ja409918n

    14. [14]

      (14) Wang, C.; Zhang, J.; Zhou, C. ACS Nano 2010, 4 (12), 7123. doi: 10.1021/nn1021378

    15. [15]

      (15) Chen, P.; Fu, Y.; Aminirad, R.;Wang, C.; Zhang, J.;Wang, K.; Galatsis, K.; Zhou, C. Nano Lett. 2011, 11 (12), 5301. doi: 10.1021/nl202765b

    16. [16]

      (16) Liu, B.;Wang, C.; Liu, J.; Che, Y.; Zhou, C. Nanoscale 2013, 5 (20), 9483. doi: 10.1039/C3NR02595K

    17. [17]

      (17) Cao, X.; Chen, H.; Gu, X.; Liu, B.;Wang, W.; Cao, Y.;Wu, F.; Zhou, C. ACS Nano 2014, 8 (12), 12769. doi: 10.1021/nn505979j

    18. [18]

      (18) Wang, C.; Chien, J.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A.; Javey, A. Nano Lett. 2012, 12 (3), 1527. doi: 10.1021/nl2043375

    19. [19]

      (19) Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Chem. Soc. Rev. 2013, 42, 2592. doi: 10.1039/C2CS35325C

    20. [20]

      (20) Zou, H. L.; Yang, Y. L.;Wu, B.; Qing, Q.W.; Li, Q.; Zhang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2002, 18 (5), 409. [邹红玲, 杨延莲, 武斌, 卿泉, 李清文, 张锦, 刘忠范. 物理化学学报, 2002, 18 (5), 409.] doi: 10.3866/PKU.WHXB20020506

    21. [21]

      (21) Tewari, A.; Gandla, S.; Rininti, A.; Karuppasam, K.; Bohm, S.; Bhattacharyya, A.; McNeill, C.; Gupta, D. Appl. Phys. Lett. 2015, 107 (10), 103302. doi: 10.1063/1.4930305

    22. [22]

      (22) Bae, S.; Oh, S.; Park, L.; Choi, S.; Moon, K. J. Korean Phys. Soc. 2002, 41 (6), 1063. doi: 10.3938.jkps.41.1063

    23. [23]

      (23) Choi, S.; Bennett, P.; Lee, D.; Bokor, J. Nano Research 2015, 8 (4), 1320. doi: 10.1007/s12274-014-0623-8

    24. [24]

      (24) Ha, T.; Chen, K.; Chuang, S.; Yu, K.; Kiriya, D.; Javey, A. Nano Lett. 2015, 15, 392. doi: 10.1021/nl5037098

    25. [25]

      (25) Javey, A.; Guo, J.;Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424 (6949), 654. doi: 10.1038/nature01797

    26. [26]

      (26) Zhang, Z.; Liang, X.;Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; ZhouW.; Li, Y.; Yao, Y.; Zhang, J.; Peng, L. Nano Lett. 2007, 7 (12), 3603. doi: 10.1021/nl0717107

    27. [27]

      (27) Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.; Avouris, P. Nano Lett. 2005, 5 (7), 1497. doi: 10.1021/nl0508624

    28. [28]

      (28) Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2002, 89 (10), 106801. doi: 10.1103/PhysRevLett.89.106801

    29. [29]

      (29) Neamen, D. Semiconductor Physics and Devices: Basic Principles, 3rd ed.; Tsinghua University, Beijing, 2003.

    30. [30]

      (30) Cao, Q.; Xia, M.; Kocabas, C.; Shim, M.; Rogers, J.; Rotkin, S. Appl. Phys. Lett. 2007, 90 (2), 023516. doi: 10.1063/1.2431465

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    15. [15]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(0)
  • Abstract views(453)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return