Citation: XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 1029-1035. doi: 10.3866/PKU.WHXB201601292
-
The contact resistance effect in the network type carbon nanotube thin film transistors (CNT-TFTs) is studied by using different contact metals. It is shown that palladium (Pd) can form an ohmic type contact with the carbon nanotube thin film, and gold (Au) forms an almost ohmic contact. On-state current and carrier mobility in the devices of these two contacts are high. In contrast, both titanium (Ti) and aluminum (Al) form Schottkytype contacts with the carbon nanotube thin film. The barrier height and the contact resistance of the Al contact are higher than those of the Ti contact. Therefore, the on-state current and carrier mobility are relatively low in the corresponding devices of these two types of contacts. These results indicate that the performance of CNTTFTs can be tuned by the contact metal, which is important for the commercialization of CNT-TFTs.
-
-
[1]
(1) Che, Y.; Chen, H.; Gui, H.; Liu, J.; Liu, B.; Zhou, C. Semicond. Sci. Tech. 2014, 29 (7), 073001. doi: 10.1088/0268-1242/29/7/073001
-
[2]
(2) Wang, C.; Zhang, J.; Ryu, K.; Badmaey, A.; De Arco, L.G.; Zhou, C. Nano Lett. 2009, 9 (12), 4285. doi: 10.1021/nl902522f
-
[3]
(3) Zhang, J.; Fu, Y.;Wang, C.; Chen, P.; Liu, Z.;Wei, W.;Wu, C.; Thompson, M.; Zhou, C. Nano Lett. 2011, 11 (11), 4852. doi: 10.1021/nl202695v
-
[4]
(4) Park, S.; Vosguerichian, M.; Bao, Z. Nanoscale 2013, 5 (5), 1727. doi: 10.1039/C3NR33560G
-
[5]
(5) Alam, M.; Pimparkar, N.; Kumar, S.; Murthy, J. MRS Bull. 2006, 31 (6), 466. doi : 10.1557/mrs2006.120.
-
[6]
(6) Hersam, M. Nat. Nanotechnol. 2008, 3 (7), 387. doi: 10.1038/nnano.2008.135
-
[7]
(7) Arnold, M.; Green, A.; Hulvat, J.; Stupp, S.; Hersam, M. Nat. Nanotechnol. 2006, 1 (1), 60. doi: 10.1038/nnano.2006.52
-
[8]
(8) Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460 (7252), 250. doi: 10.1038/nature08116
-
[9]
(9) Kim, K.; Yoon, S.; Choi, J.; Lee, J.; Kim, B.; Kim, J.; Lee, J.; Paik, U.; Park, M.; Yang, C.; An, K.; Chung, Y.; Lee, Y. Adv. Funct. Mater. 2007, 17 (11), 1775. doi: 10.1002/adfm.200600915
-
[10]
(10) Gomulya, W.; Costanzo, G.; Carbalho, E.; Bisri, S.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S.; Santos, M.; Scherf, U.; Loi, M. Adv. Mater. 2013, 25 (21), 2948. doi: 10.1002/adma.201300267
-
[11]
(11) Wang, H.; Mei, J.; Liu, P.; Schmidt, K.; Jimenez-oses, G.; Osuna, A.; Fang, L.; Tassone, C.; Zoombelt, A.; Sokolov, A.; Houk, K.; Toney, M.; Bao, Z. ACS Nano 2013, 7 (3), 2659. doi: 10.1021/nn4000435
-
[12]
(12) Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313
-
[13]
(13) Liang, S.; Zhao, Y.; Adronov, A. J. Am. Chem. Soc. 2014, 136 (3), 970. doi: 10.1021/ja409918n
-
[14]
(14) Wang, C.; Zhang, J.; Zhou, C. ACS Nano 2010, 4 (12), 7123. doi: 10.1021/nn1021378
-
[15]
(15) Chen, P.; Fu, Y.; Aminirad, R.;Wang, C.; Zhang, J.;Wang, K.; Galatsis, K.; Zhou, C. Nano Lett. 2011, 11 (12), 5301. doi: 10.1021/nl202765b
-
[16]
(16) Liu, B.;Wang, C.; Liu, J.; Che, Y.; Zhou, C. Nanoscale 2013, 5 (20), 9483. doi: 10.1039/C3NR02595K
-
[17]
(17) Cao, X.; Chen, H.; Gu, X.; Liu, B.;Wang, W.; Cao, Y.;Wu, F.; Zhou, C. ACS Nano 2014, 8 (12), 12769. doi: 10.1021/nn505979j
-
[18]
(18) Wang, C.; Chien, J.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A.; Javey, A. Nano Lett. 2012, 12 (3), 1527. doi: 10.1021/nl2043375
-
[19]
(19) Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Chem. Soc. Rev. 2013, 42, 2592. doi: 10.1039/C2CS35325C
-
[20]
(20) Zou, H. L.; Yang, Y. L.;Wu, B.; Qing, Q.W.; Li, Q.; Zhang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2002, 18 (5), 409. [邹红玲, 杨延莲, 武斌, 卿泉, 李清文, 张锦, 刘忠范. 物理化学学报, 2002, 18 (5), 409.] doi: 10.3866/PKU.WHXB20020506
-
[21]
(21) Tewari, A.; Gandla, S.; Rininti, A.; Karuppasam, K.; Bohm, S.; Bhattacharyya, A.; McNeill, C.; Gupta, D. Appl. Phys. Lett. 2015, 107 (10), 103302. doi: 10.1063/1.4930305
-
[22]
(22) Bae, S.; Oh, S.; Park, L.; Choi, S.; Moon, K. J. Korean Phys. Soc. 2002, 41 (6), 1063. doi: 10.3938.jkps.41.1063
-
[23]
(23) Choi, S.; Bennett, P.; Lee, D.; Bokor, J. Nano Research 2015, 8 (4), 1320. doi: 10.1007/s12274-014-0623-8
-
[24]
(24) Ha, T.; Chen, K.; Chuang, S.; Yu, K.; Kiriya, D.; Javey, A. Nano Lett. 2015, 15, 392. doi: 10.1021/nl5037098
-
[25]
(25) Javey, A.; Guo, J.;Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424 (6949), 654. doi: 10.1038/nature01797
-
[26]
(26) Zhang, Z.; Liang, X.;Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; ZhouW.; Li, Y.; Yao, Y.; Zhang, J.; Peng, L. Nano Lett. 2007, 7 (12), 3603. doi: 10.1021/nl0717107
-
[27]
(27) Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.; Avouris, P. Nano Lett. 2005, 5 (7), 1497. doi: 10.1021/nl0508624
-
[28]
(28) Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2002, 89 (10), 106801. doi: 10.1103/PhysRevLett.89.106801
-
[29]
(29) Neamen, D. Semiconductor Physics and Devices: Basic Principles, 3rd ed.; Tsinghua University, Beijing, 2003.
-
[30]
(30) Cao, Q.; Xia, M.; Kocabas, C.; Shim, M.; Rogers, J.; Rotkin, S. Appl. Phys. Lett. 2007, 90 (2), 023516. doi: 10.1063/1.2431465
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[4]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[5]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[6]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[7]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[8]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[9]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[10]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[11]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[12]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[13]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[14]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[15]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[16]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[17]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[18]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[19]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[20]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(323)
- HTML views(62)