Citation:
XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Physico-Chimica Sinica,
;2016, 32(4): 1029-1035.
doi:
10.3866/PKU.WHXB201601292
-
The contact resistance effect in the network type carbon nanotube thin film transistors (CNT-TFTs) is studied by using different contact metals. It is shown that palladium (Pd) can form an ohmic type contact with the carbon nanotube thin film, and gold (Au) forms an almost ohmic contact. On-state current and carrier mobility in the devices of these two contacts are high. In contrast, both titanium (Ti) and aluminum (Al) form Schottkytype contacts with the carbon nanotube thin film. The barrier height and the contact resistance of the Al contact are higher than those of the Ti contact. Therefore, the on-state current and carrier mobility are relatively low in the corresponding devices of these two types of contacts. These results indicate that the performance of CNTTFTs can be tuned by the contact metal, which is important for the commercialization of CNT-TFTs.
-
-
-
[1]
(1) Che, Y.; Chen, H.; Gui, H.; Liu, J.; Liu, B.; Zhou, C. Semicond. Sci. Tech. 2014, 29 (7), 073001. doi: 10.1088/0268-1242/29/7/073001
-
[2]
(2) Wang, C.; Zhang, J.; Ryu, K.; Badmaey, A.; De Arco, L.G.; Zhou, C. Nano Lett. 2009, 9 (12), 4285. doi: 10.1021/nl902522f
-
[3]
(3) Zhang, J.; Fu, Y.;Wang, C.; Chen, P.; Liu, Z.;Wei, W.;Wu, C.; Thompson, M.; Zhou, C. Nano Lett. 2011, 11 (11), 4852. doi: 10.1021/nl202695v
-
[4]
(4) Park, S.; Vosguerichian, M.; Bao, Z. Nanoscale 2013, 5 (5), 1727. doi: 10.1039/C3NR33560G
-
[5]
(5) Alam, M.; Pimparkar, N.; Kumar, S.; Murthy, J. MRS Bull. 2006, 31 (6), 466. doi : 10.1557/mrs2006.120.
-
[6]
(6) Hersam, M. Nat. Nanotechnol. 2008, 3 (7), 387. doi: 10.1038/nnano.2008.135
-
[7]
(7) Arnold, M.; Green, A.; Hulvat, J.; Stupp, S.; Hersam, M. Nat. Nanotechnol. 2006, 1 (1), 60. doi: 10.1038/nnano.2006.52
-
[8]
(8) Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460 (7252), 250. doi: 10.1038/nature08116
-
[9]
(9) Kim, K.; Yoon, S.; Choi, J.; Lee, J.; Kim, B.; Kim, J.; Lee, J.; Paik, U.; Park, M.; Yang, C.; An, K.; Chung, Y.; Lee, Y. Adv. Funct. Mater. 2007, 17 (11), 1775. doi: 10.1002/adfm.200600915
-
[10]
(10) Gomulya, W.; Costanzo, G.; Carbalho, E.; Bisri, S.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S.; Santos, M.; Scherf, U.; Loi, M. Adv. Mater. 2013, 25 (21), 2948. doi: 10.1002/adma.201300267
-
[11]
(11) Wang, H.; Mei, J.; Liu, P.; Schmidt, K.; Jimenez-oses, G.; Osuna, A.; Fang, L.; Tassone, C.; Zoombelt, A.; Sokolov, A.; Houk, K.; Toney, M.; Bao, Z. ACS Nano 2013, 7 (3), 2659. doi: 10.1021/nn4000435
-
[12]
(12) Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313
-
[13]
(13) Liang, S.; Zhao, Y.; Adronov, A. J. Am. Chem. Soc. 2014, 136 (3), 970. doi: 10.1021/ja409918n
-
[14]
(14) Wang, C.; Zhang, J.; Zhou, C. ACS Nano 2010, 4 (12), 7123. doi: 10.1021/nn1021378
-
[15]
(15) Chen, P.; Fu, Y.; Aminirad, R.;Wang, C.; Zhang, J.;Wang, K.; Galatsis, K.; Zhou, C. Nano Lett. 2011, 11 (12), 5301. doi: 10.1021/nl202765b
-
[16]
(16) Liu, B.;Wang, C.; Liu, J.; Che, Y.; Zhou, C. Nanoscale 2013, 5 (20), 9483. doi: 10.1039/C3NR02595K
-
[17]
(17) Cao, X.; Chen, H.; Gu, X.; Liu, B.;Wang, W.; Cao, Y.;Wu, F.; Zhou, C. ACS Nano 2014, 8 (12), 12769. doi: 10.1021/nn505979j
-
[18]
(18) Wang, C.; Chien, J.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A.; Javey, A. Nano Lett. 2012, 12 (3), 1527. doi: 10.1021/nl2043375
-
[19]
(19) Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Chem. Soc. Rev. 2013, 42, 2592. doi: 10.1039/C2CS35325C
-
[20]
(20) Zou, H. L.; Yang, Y. L.;Wu, B.; Qing, Q.W.; Li, Q.; Zhang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2002, 18 (5), 409. [邹红玲, 杨延莲, 武斌, 卿泉, 李清文, 张锦, 刘忠范. 物理化学学报, 2002, 18 (5), 409.] doi: 10.3866/PKU.WHXB20020506
-
[21]
(21) Tewari, A.; Gandla, S.; Rininti, A.; Karuppasam, K.; Bohm, S.; Bhattacharyya, A.; McNeill, C.; Gupta, D. Appl. Phys. Lett. 2015, 107 (10), 103302. doi: 10.1063/1.4930305
-
[22]
(22) Bae, S.; Oh, S.; Park, L.; Choi, S.; Moon, K. J. Korean Phys. Soc. 2002, 41 (6), 1063. doi: 10.3938.jkps.41.1063
-
[23]
(23) Choi, S.; Bennett, P.; Lee, D.; Bokor, J. Nano Research 2015, 8 (4), 1320. doi: 10.1007/s12274-014-0623-8
-
[24]
(24) Ha, T.; Chen, K.; Chuang, S.; Yu, K.; Kiriya, D.; Javey, A. Nano Lett. 2015, 15, 392. doi: 10.1021/nl5037098
-
[25]
(25) Javey, A.; Guo, J.;Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424 (6949), 654. doi: 10.1038/nature01797
-
[26]
(26) Zhang, Z.; Liang, X.;Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; ZhouW.; Li, Y.; Yao, Y.; Zhang, J.; Peng, L. Nano Lett. 2007, 7 (12), 3603. doi: 10.1021/nl0717107
-
[27]
(27) Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.; Avouris, P. Nano Lett. 2005, 5 (7), 1497. doi: 10.1021/nl0508624
-
[28]
(28) Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2002, 89 (10), 106801. doi: 10.1103/PhysRevLett.89.106801
-
[29]
(29) Neamen, D. Semiconductor Physics and Devices: Basic Principles, 3rd ed.; Tsinghua University, Beijing, 2003.
-
[30]
(30) Cao, Q.; Xia, M.; Kocabas, C.; Shim, M.; Rogers, J.; Rotkin, S. Appl. Phys. Lett. 2007, 90 (2), 023516. doi: 10.1063/1.2431465
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[4]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[5]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[6]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[7]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[8]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[9]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
-
[12]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[13]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[14]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[16]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[17]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[18]
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075
-
[19]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[20]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(522)
- HTML views(108)