Citation:
ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinica,
;2016, 32(4): 975-982.
doi:
10.3866/PKU.WHXB201601281
-
Well-dispersed graphene nanosheets (GNS) were prepared by the 60Co γ-ray irradiation reduction technique. On this basis, the hierarchical graphene nanosheet-supported poly(1,5-diaminoanthraquinone) (GNS@PDAA) nanocomposites were synthesized by the chemically oxidative polymerization method using camphor sulfonic acid as both the dopant and soft template. The influence of the DAA/GNS mass ratios on the morphology, chemical structure, and supercapacitance performance for GNS@PDAA nanocomposites was investigated. The structure, morphology, and electrochemical properties of the composites were characterized by Fourier infrared spectroscopy (FTIR), Raman spectroscopy (Raman), atomic force microscope (AFM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and electrochemical measurements. The results show that for the GNS@PDAA nanocomposite with DAA/GNS mass ratio of 6/1, the PDAA nanoparticles (20-40 nm diameter) are evenly deposited on the surface of GNS, which intercalate a large number of mesopores with 10-30 nmthrough strong π-π stacking and network confinement. As a result, the GNS@PDAA exhibits the highest specific capacitance (398.7 F·g-1 at 0.5 A·g-1), excellent rate capability (71% capacitance retention at 50 A·g-1), and superior cycling stability (only 8.3% capacitance loss after 20000 cycles). Furthermore, based on the GNS@PDAA nanocomposites as both negative and positive electrodes, the as-assembled supercapacitors showed an excellent series/parallel connection effect in aqueous system.
-
-
-
[1]
(1) Yang, X.W.; Cheng, C.;Wang, Y. F.; Qiu, L.; Li, D. Science 2013, 341 (6145), 534. doi: 10.1126/science.1239089
-
[2]
(2) Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P. F.; Mayes, R. T.; Dai, S.; Adv. Mater. 2011, 23 (42), 4828. doi: 10.1002/adma.201100984
-
[3]
(3) Jiang, H.; Lee, P. S.; Li, C. Z. Energy Environ. Sci. 2013, 6 (1), 41. doi: 10.1039/C2EE23284G
-
[4]
(4) Zhang, F.; Yuan, C. Z.; Zhu, J. J.;Wang, J.; Zhang, X. G.; Lou, X.W. Adv. Funct. Mater. 2013, 23 (31), 3909. doi: 10.1002/adfm.v23.31
-
[5]
(5) Wang, L. L.; Xing, R. G.; Zhang, B.W.; Hou, Y. Acta Phys. -Chim. Sin. 2014, 30 (9), 1659. [汪丽丽, 邢瑞光, 张邦文, 侯渊. 物理化学学报, 2014, 30 (9), 1659.] doi: 10.3866/PKU.WHXB201406162
-
[6]
(6) Tang, Q. Q.;Wang, W. Q.;Wang, G. C. J. Mater. Chem. A 2015, 3 (12), 6662. doi: 10.1039/C5TA00328H
-
[7]
(7) Li, X. G.; Li, H.; Huang, M. R. Chem. Eur. J. 2007, 13 (31), 8884. doi: 10.1002/chem.200700541
-
[8]
(8) Suematsu, S.; Naoi, K. J. Power Sources 2001, 97 (SI), 816. doi: 10.1016/S0378-7753(01)00735-2
-
[9]
(9) Hashmi, S. A.; Suematsu, S.; Naoi, K. J. Power Sources 2004, 137 (1), 145. doi: 10.1016/j.jpowsour.2004.05.007
-
[10]
(10) Gao, M. M.; Yang, F. L.;Wang, X. H.; Zhang, G. Q.; Liu, L. F. J. Phys. Chem. C 2007, 111 (46), 17268. doi: 10.1021/jp074415j
-
[11]
(11) Naoi, K.; Suematsu, S.; Hanada, M.; Takenouchi, H. J. Electrochem. Soc. 2002, 149 (4), A472. doi: 10.1149/1.1456920
-
[12]
(12) Tang, Z. Y.; Xu, G. X. Acta Phys. -Chim. Sin. 2003, 19 (4), 307. [唐致远, 徐国祥. 物理化学学报, 2003, 19 (4), 307.] doi: 10.3866/PKU.WHXB20030405
-
[13]
(13) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335 (6074), 1326. doi: 10.1126/science.1216744
-
[14]
(14) Yang, X.W.; Qiu, L.; Cheng, C.;Wu, Y. Z.; Ma, Z. F.; Li, D. Angew. Chem. Int. Edit. 2011, 50 (32), 7325. doi: 10.1002/anie.v50.32
-
[15]
(15) Wu, Q.; Xu, Y. X.; Yao, Z. Y.; Liu, A. R.; Shi, G. Q. ACS Nano 2010, 4 (4), 1963. doi: 10.1021/nn1000035
-
[16]
(16) Meng, Y. N.;Wang, K.; Zhang, Y. J.;Wei, Z. X. Adv. Mater. 2013, 25 (48), 6985. doi: 10.1002/adma.v25.48
-
[17]
(17) Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. J. Am. Chem. Soc. 2010, 132 (40), 14067. doi: 10.1021/ja1072299
-
[18]
(18) Wu, X. L.;Wen, T.; Guo, H. L.; Yang, S. B.;Wang, X. K.; Xu, A.W. ACS Nano 2013, 7 (4), 3589. doi: 10.1021/nn400566d
-
[19]
(19) Chien, H. C.; Cheng, W. Y.;Wang, Y. H.; Lu, S. Y. Adv. Funct. Mater. 2012, 22 (23), 5038. doi: 10.1002/adfm.v22.23
-
[20]
(20) Cao, J. Y.;Wang, Y. M.; Chen, J. C.; Li, X. H.;Walsh, F. C.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. J. Mater. Chem. A 2015, 3 (27), 14445. doi: 10.1039/c5ta02920a
-
[21]
(21) Zhou, H. H.; Han, G. Y.; Xiao, Y. M.; Chang, Y. Z.; Zhai, H. J. J. Power Sources 2014, 263, 259. doi: 10.1016/j.jpowsour.2014.04.039
-
[22]
(22) Liu, Y.; Ma, Y.; Guang, S. Y.; Ke, F. Y.; Xu, H. Y. Carbon 2015, 83, 79. doi: 10.1016/j.carbon.2014.11.026
-
[23]
(23) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G. Acta Phys. -Chim. Sin. 2011, 27 (10), 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27 (10), 2333.] doi: 10.3866/PKU.WHXB20111022
-
[24]
(24) Liu, H. Y.; Zhang, G. Q.; Zhou, Y. F.; Gao, M. M.; Yang, F. L. J. Mater. Chem. A 2013, 1 (44), 13902. doi: 10.1039/c3ta13600k
-
[25]
(25) Sun, M.;Wang, G. C.; Yang, C. Y.; Jiang, H.; Li, C. Z. J. Mater. Chem. A 2015, 3 (7), 3880. doi: 10.1039/C4TA06728B
-
[26]
(26) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339. doi: 10.1021/ja01539a017
-
[27]
(27) Sun, M.;Wang, G. C.; Li, X.W.; Li, C. Z. J. Power Sources 2014, 245, 436. doi: 10.1016/j.jpowsour.2013.06.145
-
[1]
-
-
-
[1]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
-
[2]
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089
-
[3]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[4]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[5]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[6]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[7]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[8]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[9]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[10]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[11]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[12]
Hongren RONG , Gexiang GAO , Zhiwei LIU , Ke ZHOU , Lixin SU , Hao HUANG , Wenlong LIU , Qi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034
-
[13]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[14]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[15]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[16]
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072
-
[17]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095
-
[18]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[19]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[20]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(469)
- HTML views(72)