Citation: XIAO Gan, ZHANG Yu-Sheng, JIANG Guang-Jun. Systematic Construction and Validation of the Reduced Chemical Kinetic Model of Gasoline Multi-Component Surrogate Fuel[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 879-892. doi: 10.3866/PKU.WHXB201601261 shu

Systematic Construction and Validation of the Reduced Chemical Kinetic Model of Gasoline Multi-Component Surrogate Fuel

  • Corresponding author: ZHANG Yu-Sheng, 
  • Received Date: 17 November 2015
    Available Online: 25 January 2016

    Fund Project: 国家自然科学基金(51176057)资助项目 (51176057)

  • Asystematic multi-stage mechanismreduction strategy for performing skeletal reductions of gasoline four-component surrogate fuel is presented. The approach includes the directed relation graph with error propagation, peak concentration analysis, linear isomer lumping, principal component analysis, temperature sensitivity analysis and rate of production analysis. The final reduced mechanism comprises 149 species and 414 reactions with embedded cross-reactions, which is suitable for homogeneous charge compression ignition (HCCI) engine application. Comparisons between computational and experimental data including the shock tube and rapid compression machine, indicate that the new reduced mechanism can provide good predictability of the ignition delay over extensive parameter space. Applying the reduced mechanism to the HCCI single zone model also shows satisfactory combustion and emission characteristics of the boosted HCCI combustion. Further heat release analysis demonstrates that R + O2 are the key reactions controlling the intermediate temperature heat release and under high pressure and low temperature conditions, iso-octane is the most important species resulting in a large portion of heat release. After the addition of 2-pentene, the new four component model displays better predictability than the three component model, especially relative to the firststage ignition delay. Based on these new findings, we can use different composition ratios to arbitrarily control the combustion phasing of HCCI combustion.
  • 加载中
    1. [1]

      (1) Kalghatgi, G. T. Proc. Combust. Inst. 2015, 35, 101. doi: 10.1016/j.proci.2014.10.002

    2. [2]

      (2) Reitz, R. D. Combust. Flame 2013, 160, 1. doi: org/10.1016/j.combustflame.2012.11.002

    3. [3]

      (3) Battin-Leclerc, F.; Blurock, E.; Bounaceur, R.; Fournet, R.; Glaude, P.; Herbinet, O.; Sirjean, B.;Warth, V. Chem. Soc. Rev. 2011, 40, 4762. doi: 10.1039/C0CS00207K

    4. [4]

      (4) Dryer, F. L. Proc. Combust. Inst. 2015, 35, 117. doi: org/10.1016/j.proci.2014.09.008

    5. [5]

      (5) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; Egolfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Tech. Pap. Ser. 2007, 2007-01-0175. doi: 10.4271/2007-01-0175

    6. [6]

      (6) Pera, C.; Knop, V. Fuel 2012, 96, 59. doi: 10.1016/j.fuel.2012.01.008

    7. [7]

      (7) Badra, J. A.; Bokhumseen, N.; Mulla, N.; Sarathy, S. M.; Farooq, A.; Kalghatgi, G. T.; Gaillard, P. Fuel 2015, 160, 458. doi: org/10.1016/j.fuel.2015.08.007

    8. [8]

      (8) Gauthier, B. M.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2004, 139, 300. doi: 10.1016/j.combustflame.2004.08.015

    9. [9]

      (9) Kukkadapu, G.; Kumar, K.; Sung, C. J.; Mehl, M.; Pitz, W. J. Combust. Flame 2012, 159, 3066. doi: org/10.1016/j.combustflame.2012.05.008

    10. [10]

      (10) Dec, J. E.; Yang, Y. SAE Tech. Pap. Ser. 2010, 2010-01-1086. doi: 10.4271/2010-01-1086

    11. [11]

      (11) Yang, Y.; Dec, J. E.; Dronniou, N.; Sjoberg, M.; Cannella, W. SAE Tech. Pap. Ser. 2011, 2011-01-1359. doi: 10.4271/2011-01-1359

    12. [12]

      (12) Mehl, M.; Chen, J. Y.; Pitz, W. J.; Sarathy, S. M.;Westbrook, C. K. Energy Fuels 2011, 25, 5215. doi: org/10.1021/ef201099y

    13. [13]

      (13) Perez, P. L.; Boehman, A. L. Energy Fuels 2012, 26, 6106. doi: org/10.1021/ef300503b

    14. [14]

      (14) Naik, C. V.; Pitz, W. J.;Westbrook, C. K.; Sjoberg, M.; Dec, J. E.; Orme, J.; Curran, H. J.; Simmie, J. M. SAE Tech. Pap. Ser. 2005, 2005-01-3741. doi: 10.4271/2005-01-3741

    15. [15]

      (15) Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P.; Kalghatgi, G. T. Combust. Flame 2008, 152, 276. doi: 10.1016/j.combustflame.2007.07.010

    16. [16]

      (16) Andrae, J. C. G. Fuel 2008, 87, 2013. doi: 10.1016/j.fuel.2007.09.010

    17. [17]

      (17) Yahyaoui, M.; Djebaïli-Chaumeix, N.; Dagaut, P.; Paillard, C. E.; Gail, S. Proc. Combust. Inst. 2007, 31, 385. doi: 10.1016/j.proci.2006.07.179

    18. [18]

      (18) Sarathy, S. M.; Kukkadapu, G.; Mehl, M.;Wang, W. J.; Javed, T.; Park, S.; Oehlschlaeger, M. A.; Farooq, A.; Pitz, W. J.; Sung C. J. Proc. Combust. Inst. 2015, 35, 249. doi: org/10.1016/j.proci.2014.05.122

    19. [19]

      (19) Ahmed, A.; Goteng, G.; Shankar, V. S. B.; Qurashi, K. A.; Roberts, W. L.; Sarathy, S. M. Fuel 2015, 143, 290. doi: org/10.1016/j.fuel.2014.11.022

    20. [20]

      (20) Lu, T. F.; Law, C. K. Prog. Energy Combust. Sci. 2009, 35, 192. doi: 10.1016/j.pecs.2008.10.002

    21. [21]

      (21) Lu, T. F.; Law, C. K. Proc. Combust. Inst. 2005, 30, 1333. doi: 10.1016/j.proci.2004.08.145

    22. [22]

      (22) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154, 67. doi: 10.1016/j.combustflame.2007.10.020

    23. [23]

      (23) Sun, W. T.; Chen, Z.; Gou, X. L.; Ju, Y. G. Combust. Flame 2010, 157, 1298. doi: 10.1016/j.combustflame.2010.03.006

    24. [24]

      (24) Luo, Z. Y.; Lu, T. F.; Maciaszek, M. J.; Som, S.; Longman, D. E. Energy Fuels 2010, 24, 6283. doi: 10.1021/ef1012227

    25. [25]

      (25) Fang, Y. M.;Wang, Q. D.;Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28, 2536. [方亚梅, 王全德, 王繁, 李象远. 物理化学学报, 2012, 28, 2536.] doi: 10.3866/PKU.WHXB201208201

    26. [26]

      (26) Hua, X. X.;Wang, J. B.;Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2011, 27, 2755. [华晓筱, 王静波, 王全德, 谈宁馨, 李象远. 物理化学学报, 2011, 27, 2755.] doi: 10.3866/PKU.WHXB20112755

    27. [27]

      (27) Liu, Y. D.; Jia, M.; Xie, M. Z.; Pang, B. Energy Fuels 2013, 27, 4899. doi: org/10.1021/ef4009955

    28. [28]

      (28) Zhang, Q. F.; Zheng, Z. L.; He, Z.W.;Wang, Y. Acta Phys. -Chim. Sin. 2011, 27, 530. [张庆峰, 郑朝蕾, 何祖威, 王迎. 物理化学学报, 2011, 27, 530.] doi: 10.3866/PKU.WHXB20110334

    29. [29]

      (29) Mehl, M.; Pitz, W. J.;Westbrook, C. K.; Curran, H. J. Proc. Combust. Inst. 2011, 33, 193. doi: 10.1016/j.proci.2010.05.027

    30. [30]

      (30) Lu, T. F.; Ju, Y. G.; Law, C. K. Combust. Flame 2001, 126, 1445. doi: 10.1016/S0010-2180(01)00252-8

    31. [31]

      (31) Lu, T. F.; Law, C. K. Combust. Flame 2008, 154, 153. doi: 10.1016/j.combustflame.2007.11.013

    32. [32]

      (32) Turanyi, T. J. Math. Chem. 1990, 5, 203. doi: 10.1007/BF01166355

    33. [33]

      (33) Maroteaux, F.; Noel, L. Combust. Flame 2006, 146, 246. doi: 10.1016/j.combustflame.2006.03.006

    34. [34]

      (34) Lutz, A. E.; Kee, R. J.; Miller, J. A. SENKIN: a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis. Report SAND87-8248. Sandia, 1987.

    35. [35]

      (35) Kee, R. J.; Grear, J. F.; Smooke, M. D.; Miller, J, A. Chemkin-II: a Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Report SAND89-8009. Sandia, 1989.

    36. [36]

      (36) Luo, Z. Y.; Plomer, M.; Lu, T. F.; Som, S.; Longman, D. E. Combust. Theor. Model. 2012, 16, 369. doi: org/10.1080/13647830.2011.631034

    37. [37]

      (37) Xiao, G..; Zhang, Y. S.; Lang, J. Chinese Internal Combustion Engine Engineering 2013, 34, 20. [肖干, 张煜盛, 郎静. 内燃机工程, 2013, 34, 20.]

    38. [38]

      (38) Sjoberg, M.; Dec, J.; Hwang, J. Y. SAE Tech. Pap. Ser. 2007, 2007-01-0207. doi: 10.4271/2007-01-0207

    39. [39]

      (39) Vuilleumier, D.; Kozarac, D.; Mehl, M.; Saxena, S.; Pitz, W.; Dibble, R.; Chen, J. Y.; Sarathy, M.; Combust. Flame 2014, 161, 680. doi: 10.1016/j.combustflame.2013.10.008

    40. [40]

      (40) Yang, Y.; Dec, J.; Sjoberg, M.; Ji, C. S. Combust. Flame 2015, 162, 4008. doi: 10.1016/j.combustflame.2015.07.040

    41. [41]

      (41) Mehl, M.; Pitz, W.;Westbrook, C. K.; Yasunag, K.; Conroy, C.; Curran, J. Proc. Combust. Inst. 2011, 33, 201. doi: 10.1016/j.proci.2010.05.040

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    13. [13]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    14. [14]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(0)
  • Abstract views(283)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return