Citation: LIU Xue-Sen, LEI Dan, GAN Li-Hua. Structures and Properties of Endohedral Metallofullerene Sc2S@C86[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 929-934. doi: 10.3866/PKU.WHXB201601221 shu

Structures and Properties of Endohedral Metallofullerene Sc2S@C86

  • Corresponding author: GAN Li-Hua, 
  • Received Date: 10 November 2015
    Available Online: 19 January 2016

    Fund Project: 国家自然科学基金(51272216) (51272216)中央高校基金(XDJK2014B032)资助项目 (XDJK2014B032)

  • Metallic sulfide fullerenes are compounds with novel structures. Currently, it is an important task to clarify the structures and properties of metallic sulfide fullerenes. Asystematic study is performed on Sc2S@C86 by the density functional theory (DFT) method. The calculated results show that the lowest-energy isomer is IPR-satisfying Sc2S@C86:63751 (the 9th isomer of C86 in the isolated pentagon rule (IPR)-only sequence), sharing the same cage with Sc2C2@C86. The second lowest energy isomer is not an isolated-pentagon-rule (non-IPR) Sc2S@C86:63376. Natural bond orbit (NBO) and theory of atoms in molecules (AIM) analyses show that there are charge transfer and covalent interactions between the encaged cluster and parent cage. The effect of temperature on the concentration is evaluated and the results show that several isomers of Sc2S@C86 may coexist at the high temperature conditions used for producing metallofullerenes. The IR spectra of the two lowest energy isomers are provided to help experimentally identify the structure of Sc2S@C86 in the future.
  • 加载中
    1. [1]

      (1) Popov, A. A.; Yang, S. Chem. Rev. 2013, 113, 5989. doi: 10.1021/cr300297r

    2. [2]

      (2) Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.;Wang, L.; Alford, J. M. J. Phys. Chem. 1991, 95, 7564.

    3. [3]

      (3) Akasaka, T.; Nagase, S. Endofullerenes: A New Family of Carbon Clusters; Kluwer Academic: Dordrecht, 2002; pp 1-11.

    4. [4]

      (4) Stevenson, S.; Fowler, P.W.; Heine, T.; Duchamp, J. C.; Rice, G.; Glass, T.; Harich, K.; Hajdu, E.; Bible, R.; Dorn, H. C. Nature 2000, 408, 427. doi: 10.1038/35044199

    5. [5]

      (5) Wang, T. S.; Chen, N.; Xiang, J. F.; Li, B.;Wu, J. Y.; Xu, W.; Jiang, L.; Tan, K.; Shu, C. Y.;Wang, C. R. J. Am. Chem. Soc. 2009, 131, 16646. doi: 10.1021/ja9077842

    6. [6]

      (6) Jiang, L.;Wang, T. S.; Shu, C. Y.;Wang, C. R. Sci. Sin. Chim. 2011, 41, 629. [蒋礼, 王太山, 舒春英, 王春儒. 中国科学, 2011, 41, 629.] doi: 10.1360/032010-950

    7. [7]

      (7) Nishibori, E.; Takata, M.; Sakata, M.; Taninaka, A.; Shinohara, H. Angew. Chem. Int. Edit. 2001, 40, 2998. doi: 10.1002/1521-3773

    8. [8]

      (8) Shinohara, H. Rep. Prog. Phys. 2000, 63, 843. doi: 10.1088/0034-4885/63/6/201

    9. [9]

      (9) Dunsch, L.; Yang, S. F. Phys. Chem. Chem. Phys. 2007, 9, 3067. doi: 10.1039/b704143h

    10. [10]

      (10) Campanera, J. M.; Bo, C.; Poblet, J. M. Angew. Chem. Int. Edit. 2005, 44, 7230. doi: 10.1002/anie.200501791

    11. [11]

      (11) Krause, M.; Hulman, M.; Kuzmany, H.; Dubay, O.; Kresse, G.; Vietze, K.; Seifert, G.;Wang, C.; Shinohara, H. Phys. Rev. Lett. 2004, 93, 137403. doi: 10.1103/PhysRevLett.93.137403

    12. [12]

      (12) Lezzi, E. B.; Duchamp, J. C.; Fletcher, K. R.; Glass, T. E.; Dorn, H. C. Nano Lett. 2002, 2, 1187. doi: 10.1021/nl025643m

    13. [13]

      (13) Inakuma, M.; Kato, H.; Taninaka, A.; Shinohara, H.; Enoki, T. J. Phys. Chem. B 2003, 107, 6965. doi: 10.1021/jp0275600

    14. [14]

      (14) Fatouros, P. P.; Shultz, M. D. Nanomedicine 2013, 8, 1853. doi: 10.2217/nnm.13.160

    15. [15]

      (15) Zhang, J.; Liu, K.; Xing, G.; Ren, T.;Wang, S. J. Radioanal. Nucl. Chem. 2007, 272, 605. doi: 10.1007/s10967-007-0632-0

    16. [16]

      (16) Lu, X.; Feng, L.; Akasaka, T. Chem. Soc. Rev. 2012, 41, 7723. doi: 10.1039/c2cs35214a

    17. [17]

      (17) Dunsch, L.; Yang, S. F.; Zhang, L.; Svitova, A.; Oswald, S.; Popov, A. A. J. Am. Chem. Soc. 2010, 132, 5413. doi: 10.1021/ja909580j

    18. [18]

      (18) Chen, N.; Chaur, M. N.; Moore, C.; Pinzón, J. R.; Valencia, R.; Rodríguez-Fortea, A.; Poblet, J. M.; Echegoyen, L. Chem. Commun. 2010, 46, 4818. doi: 10.1039/c0cc00835d

    19. [19]

      (19) Kroto, H.W. Nature 1987, 329, 529. doi: 10.1038/329529a0

    20. [20]

      (20) Campbell, E. E. B.; Fowler, P.W.; Mitchell, D.; Zerbetto, F. Chem. Phys. Lett. 1996, 250, 544. doi: 10.1016/0009-2614(96)00055-3

    21. [21]

      (21) Albertazzi, E.; Domene, C.; Fowler, P.W.; Heine, T.; Seifert, G.; Alsenoy, C. V.; Zerbetto, F. Phys. Chem. Chem. Phys. 1999, 1, 2913. doi: 10.1039/a901600g

    22. [22]

      (22) Chen, N.; Beavers, C. M.; Mulet-Gas, M.; Rodríguez-Fortea, A.; Munoz, E. J.; Li, Y. Y.; Olmstead, M. M.; Balch, A. L.; Poblet, J. M.; Echegoyen, L. J. Am. Chem. Soc. 2012, 134, 7851. doi: 10.1021/ja300765z

    23. [23]

      (23) Xie, S. Y.; Gao, F.; Lu, X.; Huang, R. B.;Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. Science 2004, 304, 699. doi: 10.1126/science.1095567

    24. [24]

      (24) Yang, S. F.; Popov, A. A.; Dunsch, L. Angew. Chem. Int. Edit. 2007, 46, 1256. doi: 10.1002/anie.200603281

    25. [25]

      (25) Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1997, 119, 12693. doi: 10.1021/ja9733088

    26. [26]

      (26) Wang, C. R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. Nature 2000, 408, 426. doi: 10.1038/35044195

    27. [27]

      (27) Kato, H.; Taninaka, A.; Sugal, T.; Shinohara, H. J. Am. Chem. Soc. 2003, 125, 7782. doi: 10.1021/ja0353255

    28. [28]

      (28) Brinkmann, G.; Friedrichs, O. D.; Lisken, S.; Peeters, A.; Cleemput, N. V. Match Commun. Math. Comput. Chem. 2010, 63, 533.

    29. [29]

      (29) Fowler, P.W.; Manolopoulos, D. E. An Atlas of Fullerenes; Oxford: UK, 1995; pp 23-41.

    30. [30]

      (30) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2009.

    31. [31]

      (31) Chen, C. H.; Ghiassi, K. B.; Cerón, M. R.; Guerrero-Ayala, M. A.; Echegoyen, L.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2015, 137, 10116. doi: 10.1021/jacs.5b06425

    32. [32]

      (32) Gan, L. H.; Chang, Q.; Zhao, C. Chem. Phys. Lett. 2013, 570, 121. doi: 10.1016/j.cplett.2013.03.067

    33. [33]

      (33) Slanina, Z.; Lee, S. L.; Uhlík, F.; Adamowicz, L.; Nagase, S. Theor. Chem. Acc. 2007, 117, 315. doi: 10.1007/s00214-006-0150-0

    34. [34]

      (34) Zhao, X.; Gao, W. Y.; Yang, T.; Zheng, J. J.; Li, L. S.; He, L.; Cao, R. J.; Nagase, S. Inorg. Chem. 2012, 51, 2039. doi: 10.1021/ic201585j

    35. [35]

      (35) Guo, Y. J.; Yang, T.; Nagase, S.; Zhao, X. Inorg. Chem. 2014, 53, 2012. doi: 10.1021/ic4022933

    36. [36]

      (36) Zhao, P.; Yang, T.; Guo, Y. J.; Dang, J. S.; Zhao, X.; Nagase, S. J. Comput. Chem. 2014, 35, 1657. doi: 10.1002/jcc.v35.22

    37. [37]

      (37) Lei, D.; Zhao, C.; Gan, L. H. Acta Chim. Sin. 2014, 72, 1105. [雷丹, 赵冲, 甘利华. 化学学报, 2014, 72, 1105.] doi: 10.6023/A14060448

    38. [38]

      (38) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University ofWisconsin: Madison, WI, 2001

    39. [39]

      (39) Weinhold, F.; Landis, C. R. Discovering Chemistry with Natural Bond Orbitals;Wiley:Wisconsin, 2012; pp 35-49.

    40. [40]

      (40) Biegler-König, F.; Schönbohm, J.; Bader, R. F.W. AIM2000, Version 2.0. McMaster University, Hamilton, Canada, 2002.

    41. [41]

      (41) Bader, R. F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1990; pp 130-166.

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

Metrics
  • PDF Downloads(1)
  • Abstract views(384)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return