Citation: YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 834-847. doi: 10.3866/PKU.WHXB201601211
-
Pt-based nanocatalysts are irreplaceable for proton exchange membrane fuel cells (PEMFCs), while the low reserves and high cost of Pt severely impede their commercialization. Tremendous efforts have been devoted to reduce the amount of precious metals and improve their electrocatalytic performance at the same time. Nanocatalysts with a hollow interior possess a large active area, high catalytic activity, good stability, and significantly reduce the amount of noble metal. The synthesis methods for their preparation are various, wherein the galvanic replacement reaction without additional procedure to remove the core, without the functionalization to the template surface and with ease of control, is the main method to prepare hollow structural nanocatalysts. We review the recent developments of hollow Pt-based nanocatalysts synthesized by the galvanic replacement reaction. The further challenges and developments of hollow Pt-based nanocatalysts are also discussed.
-
-
[1]
(1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
-
[2]
(2) Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.;Wang, H. J. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c
-
[3]
(3) Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Chem. Rev. 2015, 115, 8896. doi: 10.1021/acs.chemrev.5b00255
-
[4]
(4) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484
-
[5]
(5) Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Chem. Soc. Rev. 2011, 40, 4167. doi: 10.1039/c0cs00176g
-
[6]
(6) Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Chem. Rev. 2015, 114, 12397.
-
[7]
(7) Kung, C. C.; Lin, P. Y.; Xue, Y. H.; Akolkar, R.; Dai, L. M.; Yu, X.; Liu, C. C. J. Power Sources 2014, 256, 329. doi: 10.1016/j.jpowsour.2014.01.074
-
[8]
(8) Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z.W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y. D.; Markovic, N. M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061
-
[9]
(9) Gunji, T.; Tanabe, T.; Jeevagan, A. J.; Usui, S.; Tsuda, T.; Kaneko, S.; Saravanan, G.; Abe, H.; Matsumoto, F. J. Power Sources 2015, 273, 990. doi: 10.1016/j.jpowsour.2014.09.182
-
[10]
(10) Jia, Y. Y.; Jiang, Y. Q.; Zhang, J.W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. J. Am. Chem. Soc. 2014, 136, 3748. doi: 10.1021/ja413209q
-
[11]
(11) Chen, Y.; Yang, J.; Yang, Y.; Peng, Z. Y.; Li, J. H.; Mei, T.; Wang, J. Y.; Hao, M.; Chen, Y. L.; Xiong, W. L.; Zhang, L.; Wang, X. B. Chem. Commun. 2015, 51, 10490. doi: 10.1039/C5CC01803J
-
[12]
(12) Hong, W.;Wang, J.;Wang, E. K. Small 2014, 10, 3262. doi: 10.1002/smll.v10.16
-
[13]
(13) Cui, Z. M.; Yang, M. H.; Chen, H.; Zhao, M. T.; DiSalvo, F. J. ChemSusChem 2014, 7, 3356. doi: 10.1002/cssc.v7.12
-
[14]
(14) Beyhan, S.; Léger, J. M.; Kadırgan, F. Appl. Catal. B: Environ. 2014, 144, 66. doi: 10.1016/j.apcatb.2013.07.020
-
[15]
(15) Hong, W.; Shang, C. C.;Wang, J.;Wang, E. K. Nanoscale 2015, 7, 9985. doi: 10.1039/C5NR01679G
-
[16]
(16) Scofield, M. E.; Koenigsmann, C.;Wang, L.; Liu, H. Q.; Wong, S. S. Energy Environ. Sci. 2015, 8, 350. doi: 10.1039/C4EE02162B
-
[17]
(17) Tripkovic, V.; Hansen, H. H.; Rossmeislbc, J.; Vegge, T. Phys. Chem. Chem. Phys. 2015, 17, 11647. doi: 10.1039/C5CP00071H
-
[18]
(18) Chen, X. T.;Wang, H.;Wang, Y.; Bai, Q. G.; Gao, Y. L.; Zhang, Z. H. Catalysts 2015, 5, 1003. doi: 10.3390/catal5031003
-
[19]
(19) Liu, B.; Liao, S. J.; Liang, Z. X. Prog. Chem. 2011, 23, 852. [刘宾, 廖世军, 梁振兴. 化学进展, 2011, 23, 852.]
-
[20]
(20) Zhou, X.W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. J. Power Sources 2013, 232, 310.
-
[21]
(21) Zhang, L.; Roling, L. T.;Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412. doi: 10.1126/science.aab0801
-
[22]
(22) Zhang, Y.; Hsieh, Y. C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y. M.; Liu, P.;Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738. doi: 10.1021/cs401091u
-
[23]
(23) Chen, Z.W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. Energ. Environ. Sci. 2011, 4, 3167. doi: 10.1039/c0ee00558d
-
[24]
(24) Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horm, Y. Energ. Environ. Sci. 2015, 8, 1404. doi: 10.1039/C4EE03869J
-
[25]
(25) Lin, L.; Zhu, Q.; Xu, A.W. J. Am. Chem. Soc. 2014, 136, 11027. doi: 10.1021/ja504696r
-
[26]
(26) Lou, X.W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987. doi: 10.1002/adma.v20:21
-
[27]
(27) Du, N.; Zhang, H.;Wu, P.; Yu, J. X.; Yang, D. R. J. Phys. Chem. C 2009, 113, 17387. doi: 10.1021/jp906349c
-
[28]
(28) Xia, Y. D.; Mokaya, R. Adv. Mater. 2004, 16, 1553.
-
[29]
(29) Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P. J. Power Sources 2012, 203, 17.
-
[30]
(30) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47, 3885. doi: 10.1039/c0cc05233g
-
[31]
(31) Ma, C. A.; Kang, L. Z.; Shi, M. Q.; Lang, X. L.; Jiang, Y. K. J. Alloy. Compd. 2014, 588, 481. doi: 10.1016/j. jallcom.2013.11.090
-
[32]
(32) Ma, Y. Y.;Wang, R. F.;Wang, H.; Key, J.; Ji, S. RSC Adv. 2015, 5, 9837. doi: 10.1039/C4RA14423F
-
[33]
(33) Kim, S.W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642. doi: 10.1021/ja026032z
-
[34]
(34) Yu, Y. H.; Yin, X.; Kvit, A.;Wang, X. D. Nano Lett. 2014, 14, 2528. doi: 10.1021/nl5002907
-
[35]
(35) Choi, B. S.; Kim, S. M.; Gong, J.; Lee, Y.W.; Kang, S.W.; Lee, H. S.; Park, J. Y.; Han, S.W. Chem. Eur. J. 2014, 20, 11669. doi: 10.1002/chem.201403992
-
[36]
(36) Li, C. L.; Jiang, B.; Imura, M.; Malgras, V.; Yamauchi, Y. Chem. Commun. 2014, 50, 15337. doi: 10.1039/C4CC07071B
-
[37]
(37) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47, 3885. doi: 10.1039/c0cc05233g
-
[38]
(38) Yang, R. Z.; Li, H.; Qiu, X. P.; Chen, L. Q. Chem. Eur. J. 2006, 12, 4083.
-
[39]
(39) Galeano, C.; Meier, J. C.; Soorholtz, M.; Bongard, H.; Baldizzone, C.; Mayrhofer, K. J. J.; Schuüth, F. ACS Catal. 2014, 4, 3856. doi: 10.1021/cs5003492
-
[40]
(40) Lin, G.; Lu, W. New J. Chem. 2015, 39, 4231. doi: 10.1039/C5NJ00595G
-
[41]
(41) Jiao, C. P.; Huang, Z. L.; Zhang, H. J.; Zhang, S.W. Prog. Chem. 2015, 27, 472. [焦成鹏, 黄自力, 张海军, 张少伟. 化学进展, 2015, 27, 472.]
-
[42]
(42) Lai, X. Y.; Halpert, J. E.;Wang, D. Energy Environ. Sci. 2012, 5, 5604. doi: 10.1039/C1EE02426D
-
[43]
(43) Xia, X. H.;Wang, Y.; Ruditskiy, A.; Xia, Y. N. Adv. Mater. 2013, 25, 6313. doi: 10.1002/adma.v25.44
-
[44]
(44) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 116, 1566.
-
[45]
(45) Xiao, Y. P.;Wan, S.; Zhang, X.; Hu, J.;Wei, Z. D.;Wan, L. J. Chem. Commun. 2012, 48, 10331. doi: 10.1039/c2cc35562k
-
[46]
(46) Xu, W.; He, J.; Gao, L.; Zhang, J.; Hui, J.; Guo, Y.; Li, W.; Yu, C. J. Electroanal. Chem. 2015, 741, 8. doi: 10.1016/j.jelechem.2015.01.004
-
[47]
(47) Wang, J. X.; Ma, C.; Choi, Y. M.; Su, D.; Zhu, Y. M.; Liu, P.; Si, R.; Vukmirovic, M. B.; Zhang, Y.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 13551. doi: 10.1021/ja204518x
-
[48]
(48) Liang, H.W.; Liu. S.; Gong, J. Y.;Wang, S. B.;Wang, L.; Yu, S. H. Adv. Mater. 2009, 21, 1850. doi: 10.1002/adma.v21:18
-
[49]
(49) Chen, H. M.; Liu, R. S.; Lo, M. Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. F. J. Phys. Chem. C 2008, 112, 7522. doi: 10.1021/jp711609q
-
[50]
(50) Xiao, Y.; Lv, Q.; Zhu. J. B.; Yao S. K.; Liu, C. P.; Xing, W. RSC Adv. 2014, 4, 21176. doi: 10.1039/c4ra02568g
-
[51]
(51) Kim, Y.; Kim, H. J.; Kim, Y. S.; Choi, S. M.; Seo, M. H.; Kim, W. B. J. Phys. Chem. C 2012, 116, 18093. doi: 10.1021/jp3054795
-
[52]
(52) Kim, S. J.; Ah, C. S.; Jang, D. J. Adv. Mater. 2007, 19, 1064.
-
[53]
(53) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.;Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
-
[54]
(54) Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Angew. Chem. Int. Edit. 2009, 48, 4808. doi: 10.1002/anie.v48:26
-
[55]
(55) Zhang, H.; Jin, M. S.; Liu, H. Y.;Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. ACS Nano 2011, 5, 8212. doi: 10.1021/nn202896q
-
[56]
(56) Hong, J. K.; Kang, S.W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S.W. ACS Nano 2012, 6, 2410. doi: 10.1021/nn2046828
-
[57]
(57) Lai, S.; Fu, C.; Chen, Y.;Yu, X.; Lai, X.;Ye, C.; Hu, J. J. Power Sources 2015, 274, 604. doi: 10.1016/j.jpowsour.2014.10.063
-
[58]
(58) Wang, L.; Yamauchi, Y. J. Am. Chem. Soc. 2013, 135, 16762. doi: 10.1021/ja407773x
-
[59]
(59) Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.;Wan, L. J.; Bai, C. L. Chem. Commun. 2004, 13, 1496.
-
[60]
(60) Lee, D.; Jang, H. Y.; Hong, S.; Park. S. J. Colloid Interface Sci. 2012, 388, 74. doi: 10.1016/j.jcis.2012.08.011
-
[61]
(61) You, H. J.; Zhang, F. L.; Liu, Z.; Fang, J. X. ACS Catal. 2014, 4, 2829. doi: 10.1021/cs500390s
-
[62]
(62) Cai, K.; Liu, J.W.; Zhang, H.; Huang, Z.; Lu, Z. C.; Foda, M. F.; Li, T. T.; Han, H. Y. Chem. Eur. J. 2015, 21, 7556. doi: 10.1002/chem.201406582
-
[63]
(63) Lu, C.; Kong, W.; Zhang, H.; Song, B.;Wang, Z. J. Power Sources 2015, 296, 102. doi: 10.1016/j.jpowsour.2015.07.049
-
[64]
(64) Seo, D.; Song, H. J. Am. Chem. Soc. 2009, 131, 18210. doi: 10.1021/ja907640h
-
[65]
(65) Straney, P. J.; Marbella, L. E.; Andolina, C. M.; Nuhfer, N. T.; Millstone, J. E. J. Am. Chem. Soc. 2014, 136, 7873. doi: 10.1021/ja504294p
-
[66]
(66) Wang, Q. Y.; Cui, X. Q.; Guan, W. M.; Zhang, L.; Fan, X. F.; Shi, Z.; Zheng, W. T. J. Power Sources 2014, 269, 152.
-
[67]
(67) Chen, J. Y.;Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. Y.; Xia, Y. N. Nano Lett. 2005, 5, 2058. doi: 10.1021/nl051652u
-
[68]
(68) Bansal, V.; O′Mullane, A. P.; Bhargava, S. K. Electrochem. Commun. 2009, 11, 1639. doi: 10.1016/j.elecom.2009.06.018
-
[69]
(69) Zhang, W. Q.; Yang, J. Z.; Lu, X. M. ACS Nano 2012, 6, 7397. doi: 10.1021/nn302590k
-
[70]
(70) Kim, Y.; Kim, H.; Kim, W. B. Electrochem. Commun. 2014, 46, 36. doi: 10.1016/j.elecom.2014.06.007
-
[71]
(71) Tsuji, M.; Hamasaki, M.; Yajima, A.; Hattori, M.; Tsuji, T.; Kawazumi, H. Mater. Lett. 2014, 121, 113. doi: 10.1016/j.matlet.2014.01.093
-
[72]
(72) Kim, M. R.; Lee, D. K.; Jang, D. J. Appl. Catal. B: Environ. 2011, 103, 253. doi: 10.1016/j.apcatb.2011.01.036
-
[73]
(73) Lin, C. T.; Shiao, M. H.; Chang, M. N.; Chu, N.; Chen, Y.W.; Peng, Y. H.; Liao, B. H.; Huang, H. J.; Hsiao, C. N.; Tseng, F. G. Nanoscale Res. Lett. 2015, 10, 74. doi: 10.1186/s11671-015-0791-9
-
[74]
(74) Ma, D.; Tang, X.; Guo, M.; Lu, H.; Xu, X. Ionics 2015, 21, 1417. doi: 10.1007/s11581-014-1290-1
-
[75]
(75) Hou, P. F.; Cui, P. L.; Liu, H.; Li, J. L.; Yang, J. Nano Res. 2015, 8, 512. doi: 10.1007/s12274-014-0663-0
-
[76]
(76) Vasquez, Y.; Sra, A. K.; Schaak, R. E. J. Am. Chem. Soc. 2005, 127, 12504. doi: 10.1021/ja054442s
-
[77]
(77) Zhou, X.W.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. J. Nanosci. Nanotechnol. 2009, 9, 2392. doi: 10.1166/jnn.2009.SE34
-
[78]
(78) Zhou, X.W.; Zhang, R. H. Sun, S. G. Acta Phys.-Chim. Sin. 2010, 26, 3360. [周新文, 张荣华, 孙世刚. 物理化学学报, 2010, 26, 3360.] doi: 10.3866/PKU.WHXB20101125
-
[79]
(79) Zhou, X.W.; Zhang, R. H.; Zeng, D. M.; Sun, S. G. J. Solid State Chem. 2010, 183, 1340. doi: 10.1016/j.jssc.2010.04.003
-
[80]
(80) Zhou, X.W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文, 甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031
-
[81]
(81) Sun, Q.;Wang, S. G.;Wang, R. M. J. Phys. Chem. C 2012, 116, 5352. doi: 10.1021/jp210144p
-
[82]
(82) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochem. Commun. 2013, 30, 71. doi: 10.1016/j.elecom.2013.02.010
-
[83]
(83) Xia, B. Y.;Wu, H. B.;Wang, X.; Lou, X.W. J. Am. Chem. Soc. 2012, 134, 13934. doi: 10.1021/ja3051662
-
[84]
(84) Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Chem. Commun. 2015, 51, 9722. doi: 10.1039/C5CC03190G
-
[85]
(85) Du, C. Y.; Chen, M.;Wang, W. G.; Tan, Q.; Xiong, K.; Yin, G. P. J. Power Sources 2013, 240, 630. doi: 10.1016/j.jpowsour.2013.05.023
-
[86]
(86) Su, L.; Shrestha, S.; Zhang, Z. H.; Mustain, W.; Lei, Y. J. Mater. Chem. A 2013, 1, 12293. doi: 10.1039/c3ta13097e
-
[87]
(87) Liu, J.; Xu, C.; Liu, C.;Wang, F.; Liu, H.; Ji, J.; Li, Z. Electrochim. Acta 2015, 152, 425. doi: 10.1016/j.electacta.2014.11.133
-
[88]
(88) Wang, M.; Zhang, W. M.;Wang, J. Z.; Minett, A.; Lo, V.; Liu, H. K.; Chen, J. J. Mater. Chem. A 2013, 1, 2391. doi: 10.1039/c2ta01470j
-
[89]
(89) Zhou, X.W.; Zhang, R. H.; Zhou, Z. Y.; Sun, S. G. J. Power Sources 2011, 196, 5844. doi: 10.1016/j.jpowsour.2011.02.088
-
[90]
(90) Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.;Wang, R. M. J. Mater. Chem. A 2015, 3, 1031. doi: 10.1039/C4TA05812G
-
[91]
(91) Hu, Y. J.;Wu, P.; Zhang, H.; Cai, C. X. Electrochim. Acta 2012, 85, 314.
-
[92]
(92) Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. ACS Catal. 2015, 5, 5333. doi: 10.1021/acscatal.5b01248
-
[93]
(93) Sun, Y.; Yang, H.; Yu, X.; Meng, H.; Xu, X. RSC Adv. 2015, 5, 70387. doi: 10.1039/C5RA13383A
-
[94]
(94) Bae, S. J.; Yoo, S. J.; Lim, Y.; Kim. S.; Lim, Y.; Choi, J.; Nahm, K. S.; Hwang, S. J.; Lim, T. H.; Kim, S. K.; Kim, P. J. Mater. Chem. 2012, 22, 8820. doi: 10.1039/c2jm16827h
-
[95]
(95) Dubau, L.; Lopez-Haro, M.; Durst, J.; Guetaz, L.; Bayle- Guillemaud, P.; Chatenet, M.; Maillard, F. J. Mater. Chem. A 2014, 2, 18497. doi: 10.1039/C4TA03975K
-
[96]
(96) Chen, D. J.; Zhou, Z. Y.;Wang, Q.; Xiang, D. M.; Tian, N.; Sun, S. G. Chem. Commun. 2010, 46, 4252. doi: 10.1039/c002964e
-
[97]
(97) Zhao, X.; Zhu, J. B.; Cai, W.W.; Xiao, M. L.; Liang, L.; Liu, C. P.; Xing, W. RSC Adv. 2013, 3, 1763.
-
[98]
(98) Liu, Y.; Zhang, S.; Ren, X.;Wang, Y.; Yan, L.;Wei, Q.; Du, B. RSC Adv. 2015, 5, 57346. doi: 10.1039/C5RA07397A
-
[99]
(99) Zheng, J.; Cullen, D. A.; Forest, R. V.;Wittkopf, J.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. ACS Catal. 2015, 5, 1468. doi: 10.1021/cs501449y
-
[100]
(100) Ye, F.; Yang, J. H.; Hu, W.W.; Liu, H.; Liao, S. J.; Zeng, J. H.; Yang, J. RSC Adv. 2012, 2, 7479. doi: 10.1039/c2ra21140h
-
[101]
(101) Luo, B. M.; Yan, X. B.; Chen, J. G.; Xu, S.; Xue, Q. J. Int. J. Hydrogen Energy 2013, 38, 13011. doi: 10.1016/j.ijhydene.2013.03.139
-
[102]
(102) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 2337. [颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26, 2337.] doi: 10.3866/PKU.WHXB20100835
-
[103]
(103) Hong, W.; Shang, C. S.;Wang, J.;Wang, E. K. Nanoscale 2015, 7, 9985. doi: 10.1039/C5NR01679G
-
[104]
(104) Hao, Y.; Yang, Y.; Hong, L.; Yuan, J.; Niu, L.; Gui, U. ACS Appl. Mater. Inter. 2014, 6, 21986. doi: 10.1021/am5047747
-
[105]
(105) Chen, Y. X.; Lai, S. Q.; Jiang, S. L.; Liu, Y.; Fu, C. L.; Li, A. Q.; Chen, Y. Y.; Lai, X. D.; Hu, J. Q. Mater. Lett. 2015, 157, 15. doi: 10.1016/j.matlet.2015.05.009
-
[106]
(106) Guo, Z. G.; Dai, X. P.; Yang, Y.; Zhang, Z. C.; Zhang, X.; Mi, S. Q.; Xu, K.; Li, Y. F. J. Mater. Chem. A 2013, 1, 13252.
-
[107]
(107) Ryu, J.; Choi, J.; Lim, D. H.; Seo, H. L.; Lee, S. Y.; Sohn, Y.; Park, J. H.; Kim, H. J.; Hong, S. A.; Kim, P.; Yoo, S. J. Appl. Catal. B: Environ. 2015, 174, 526.
-
[108]
(108) Shviro, M.; Polani, S.; Zitoun, D. Nanoscale 2015, 7, 13521.
-
[109]
(109) An, L.; Zhu, M.; Dai, B.; Yu, F. Electrochim. Acta 2015, 176, 222. doi: 10.1016/j.electacta.2015.06.135
-
[110]
(110) Bai, Z.; Huang, R.; Niu, L.; Zhang, Q.; Yang, L.; Zhang, J. Catalysts 2015, 5, 747. doi: 10.3390/catal5020747
-
[111]
(111) Peng, C.; Hu, Y.; Liu, M.; Zheng, Y. J. Power Sources 2015, 278, 69. doi: 10.1016/j.jpowsour.2014.12.056
-
[112]
(112) Li, R.S.; Hao, H.; Cai, W. B.; Huang, T.; Yu, A. S. Electrochem. Commun. 2010, 12, 901. doi: 10.1016/j. elecom.2010.04.016
-
[113]
(113) Hong, W.;Wang, J.;Wang, E. RSC Adv. 2015, 5, 46935. doi: 10.1039/C5RA08300A
-
[114]
(114) Shang, C.; Hong, W.;Wang, J.;Wang, E. J. Power Sources 2015, 285, 12. doi: 10.1016/j.jpowsour.2015.03.092
-
[1]
-
-
[1]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[4]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[5]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[6]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[9]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[10]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[11]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[14]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[15]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[16]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[17]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[18]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[19]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[20]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(420)
- HTML views(44)