Citation: YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 834-847. doi: 10.3866/PKU.WHXB201601211 shu

Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells

  • Corresponding author: DAI Zhong-Xu,  ZHOU Xin-Wen, 
  • Received Date: 3 December 2015
    Available Online: 18 January 2016

    Fund Project: 国家自然科学基金(21403126, 21503120)资助项目 (21403126, 21503120)

  • Pt-based nanocatalysts are irreplaceable for proton exchange membrane fuel cells (PEMFCs), while the low reserves and high cost of Pt severely impede their commercialization. Tremendous efforts have been devoted to reduce the amount of precious metals and improve their electrocatalytic performance at the same time. Nanocatalysts with a hollow interior possess a large active area, high catalytic activity, good stability, and significantly reduce the amount of noble metal. The synthesis methods for their preparation are various, wherein the galvanic replacement reaction without additional procedure to remove the core, without the functionalization to the template surface and with ease of control, is the main method to prepare hollow structural nanocatalysts. We review the recent developments of hollow Pt-based nanocatalysts synthesized by the galvanic replacement reaction. The further challenges and developments of hollow Pt-based nanocatalysts are also discussed.
  • 加载中
    1. [1]

      (1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115

    2. [2]

      (2) Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.;Wang, H. J. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c

    3. [3]

      (3) Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Chem. Rev. 2015, 115, 8896. doi: 10.1021/acs.chemrev.5b00255

    4. [4]

      (4) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484

    5. [5]

      (5) Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Chem. Soc. Rev. 2011, 40, 4167. doi: 10.1039/c0cs00176g

    6. [6]

      (6) Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Chem. Rev. 2015, 114, 12397.

    7. [7]

      (7) Kung, C. C.; Lin, P. Y.; Xue, Y. H.; Akolkar, R.; Dai, L. M.; Yu, X.; Liu, C. C. J. Power Sources 2014, 256, 329. doi: 10.1016/j.jpowsour.2014.01.074

    8. [8]

      (8) Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z.W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y. D.; Markovic, N. M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061

    9. [9]

      (9) Gunji, T.; Tanabe, T.; Jeevagan, A. J.; Usui, S.; Tsuda, T.; Kaneko, S.; Saravanan, G.; Abe, H.; Matsumoto, F. J. Power Sources 2015, 273, 990. doi: 10.1016/j.jpowsour.2014.09.182

    10. [10]

      (10) Jia, Y. Y.; Jiang, Y. Q.; Zhang, J.W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. J. Am. Chem. Soc. 2014, 136, 3748. doi: 10.1021/ja413209q

    11. [11]

      (11) Chen, Y.; Yang, J.; Yang, Y.; Peng, Z. Y.; Li, J. H.; Mei, T.; Wang, J. Y.; Hao, M.; Chen, Y. L.; Xiong, W. L.; Zhang, L.; Wang, X. B. Chem. Commun. 2015, 51, 10490. doi: 10.1039/C5CC01803J

    12. [12]

      (12) Hong, W.;Wang, J.;Wang, E. K. Small 2014, 10, 3262. doi: 10.1002/smll.v10.16

    13. [13]

      (13) Cui, Z. M.; Yang, M. H.; Chen, H.; Zhao, M. T.; DiSalvo, F. J. ChemSusChem 2014, 7, 3356. doi: 10.1002/cssc.v7.12

    14. [14]

      (14) Beyhan, S.; Léger, J. M.; Kadırgan, F. Appl. Catal. B: Environ. 2014, 144, 66. doi: 10.1016/j.apcatb.2013.07.020

    15. [15]

      (15) Hong, W.; Shang, C. C.;Wang, J.;Wang, E. K. Nanoscale 2015, 7, 9985. doi: 10.1039/C5NR01679G

    16. [16]

      (16) Scofield, M. E.; Koenigsmann, C.;Wang, L.; Liu, H. Q.; Wong, S. S. Energy Environ. Sci. 2015, 8, 350. doi: 10.1039/C4EE02162B

    17. [17]

      (17) Tripkovic, V.; Hansen, H. H.; Rossmeislbc, J.; Vegge, T. Phys. Chem. Chem. Phys. 2015, 17, 11647. doi: 10.1039/C5CP00071H

    18. [18]

      (18) Chen, X. T.;Wang, H.;Wang, Y.; Bai, Q. G.; Gao, Y. L.; Zhang, Z. H. Catalysts 2015, 5, 1003. doi: 10.3390/catal5031003

    19. [19]

      (19) Liu, B.; Liao, S. J.; Liang, Z. X. Prog. Chem. 2011, 23, 852. [刘宾, 廖世军, 梁振兴. 化学进展, 2011, 23, 852.]

    20. [20]

      (20) Zhou, X.W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. J. Power Sources 2013, 232, 310.

    21. [21]

      (21) Zhang, L.; Roling, L. T.;Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412. doi: 10.1126/science.aab0801

    22. [22]

      (22) Zhang, Y.; Hsieh, Y. C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y. M.; Liu, P.;Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738. doi: 10.1021/cs401091u

    23. [23]

      (23) Chen, Z.W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. Energ. Environ. Sci. 2011, 4, 3167. doi: 10.1039/c0ee00558d

    24. [24]

      (24) Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horm, Y. Energ. Environ. Sci. 2015, 8, 1404. doi: 10.1039/C4EE03869J

    25. [25]

      (25) Lin, L.; Zhu, Q.; Xu, A.W. J. Am. Chem. Soc. 2014, 136, 11027. doi: 10.1021/ja504696r

    26. [26]

      (26) Lou, X.W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987. doi: 10.1002/adma.v20:21

    27. [27]

      (27) Du, N.; Zhang, H.;Wu, P.; Yu, J. X.; Yang, D. R. J. Phys. Chem. C 2009, 113, 17387. doi: 10.1021/jp906349c

    28. [28]

      (28) Xia, Y. D.; Mokaya, R. Adv. Mater. 2004, 16, 1553.

    29. [29]

      (29) Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P. J. Power Sources 2012, 203, 17.

    30. [30]

      (30) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47, 3885. doi: 10.1039/c0cc05233g

    31. [31]

      (31) Ma, C. A.; Kang, L. Z.; Shi, M. Q.; Lang, X. L.; Jiang, Y. K. J. Alloy. Compd. 2014, 588, 481. doi: 10.1016/j. jallcom.2013.11.090

    32. [32]

      (32) Ma, Y. Y.;Wang, R. F.;Wang, H.; Key, J.; Ji, S. RSC Adv. 2015, 5, 9837. doi: 10.1039/C4RA14423F

    33. [33]

      (33) Kim, S.W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642. doi: 10.1021/ja026032z

    34. [34]

      (34) Yu, Y. H.; Yin, X.; Kvit, A.;Wang, X. D. Nano Lett. 2014, 14, 2528. doi: 10.1021/nl5002907

    35. [35]

      (35) Choi, B. S.; Kim, S. M.; Gong, J.; Lee, Y.W.; Kang, S.W.; Lee, H. S.; Park, J. Y.; Han, S.W. Chem. Eur. J. 2014, 20, 11669. doi: 10.1002/chem.201403992

    36. [36]

      (36) Li, C. L.; Jiang, B.; Imura, M.; Malgras, V.; Yamauchi, Y. Chem. Commun. 2014, 50, 15337. doi: 10.1039/C4CC07071B

    37. [37]

      (37) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47, 3885. doi: 10.1039/c0cc05233g

    38. [38]

      (38) Yang, R. Z.; Li, H.; Qiu, X. P.; Chen, L. Q. Chem. Eur. J. 2006, 12, 4083.

    39. [39]

      (39) Galeano, C.; Meier, J. C.; Soorholtz, M.; Bongard, H.; Baldizzone, C.; Mayrhofer, K. J. J.; Schuüth, F. ACS Catal. 2014, 4, 3856. doi: 10.1021/cs5003492

    40. [40]

      (40) Lin, G.; Lu, W. New J. Chem. 2015, 39, 4231. doi: 10.1039/C5NJ00595G

    41. [41]

      (41) Jiao, C. P.; Huang, Z. L.; Zhang, H. J.; Zhang, S.W. Prog. Chem. 2015, 27, 472. [焦成鹏, 黄自力, 张海军, 张少伟. 化学进展, 2015, 27, 472.]

    42. [42]

      (42) Lai, X. Y.; Halpert, J. E.;Wang, D. Energy Environ. Sci. 2012, 5, 5604. doi: 10.1039/C1EE02426D

    43. [43]

      (43) Xia, X. H.;Wang, Y.; Ruditskiy, A.; Xia, Y. N. Adv. Mater. 2013, 25, 6313. doi: 10.1002/adma.v25.44

    44. [44]

      (44) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 116, 1566.

    45. [45]

      (45) Xiao, Y. P.;Wan, S.; Zhang, X.; Hu, J.;Wei, Z. D.;Wan, L. J. Chem. Commun. 2012, 48, 10331. doi: 10.1039/c2cc35562k

    46. [46]

      (46) Xu, W.; He, J.; Gao, L.; Zhang, J.; Hui, J.; Guo, Y.; Li, W.; Yu, C. J. Electroanal. Chem. 2015, 741, 8. doi: 10.1016/j.jelechem.2015.01.004

    47. [47]

      (47) Wang, J. X.; Ma, C.; Choi, Y. M.; Su, D.; Zhu, Y. M.; Liu, P.; Si, R.; Vukmirovic, M. B.; Zhang, Y.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 13551. doi: 10.1021/ja204518x

    48. [48]

      (48) Liang, H.W.; Liu. S.; Gong, J. Y.;Wang, S. B.;Wang, L.; Yu, S. H. Adv. Mater. 2009, 21, 1850. doi: 10.1002/adma.v21:18

    49. [49]

      (49) Chen, H. M.; Liu, R. S.; Lo, M. Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. F. J. Phys. Chem. C 2008, 112, 7522. doi: 10.1021/jp711609q

    50. [50]

      (50) Xiao, Y.; Lv, Q.; Zhu. J. B.; Yao S. K.; Liu, C. P.; Xing, W. RSC Adv. 2014, 4, 21176. doi: 10.1039/c4ra02568g

    51. [51]

      (51) Kim, Y.; Kim, H. J.; Kim, Y. S.; Choi, S. M.; Seo, M. H.; Kim, W. B. J. Phys. Chem. C 2012, 116, 18093. doi: 10.1021/jp3054795

    52. [52]

      (52) Kim, S. J.; Ah, C. S.; Jang, D. J. Adv. Mater. 2007, 19, 1064.

    53. [53]

      (53) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.;Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941

    54. [54]

      (54) Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Angew. Chem. Int. Edit. 2009, 48, 4808. doi: 10.1002/anie.v48:26

    55. [55]

      (55) Zhang, H.; Jin, M. S.; Liu, H. Y.;Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. ACS Nano 2011, 5, 8212. doi: 10.1021/nn202896q

    56. [56]

      (56) Hong, J. K.; Kang, S.W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S.W. ACS Nano 2012, 6, 2410. doi: 10.1021/nn2046828

    57. [57]

      (57) Lai, S.; Fu, C.; Chen, Y.;Yu, X.; Lai, X.;Ye, C.; Hu, J. J. Power Sources 2015, 274, 604. doi: 10.1016/j.jpowsour.2014.10.063

    58. [58]

      (58) Wang, L.; Yamauchi, Y. J. Am. Chem. Soc. 2013, 135, 16762. doi: 10.1021/ja407773x

    59. [59]

      (59) Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.;Wan, L. J.; Bai, C. L. Chem. Commun. 2004, 13, 1496.

    60. [60]

      (60) Lee, D.; Jang, H. Y.; Hong, S.; Park. S. J. Colloid Interface Sci. 2012, 388, 74. doi: 10.1016/j.jcis.2012.08.011

    61. [61]

      (61) You, H. J.; Zhang, F. L.; Liu, Z.; Fang, J. X. ACS Catal. 2014, 4, 2829. doi: 10.1021/cs500390s

    62. [62]

      (62) Cai, K.; Liu, J.W.; Zhang, H.; Huang, Z.; Lu, Z. C.; Foda, M. F.; Li, T. T.; Han, H. Y. Chem. Eur. J. 2015, 21, 7556. doi: 10.1002/chem.201406582

    63. [63]

      (63) Lu, C.; Kong, W.; Zhang, H.; Song, B.;Wang, Z. J. Power Sources 2015, 296, 102. doi: 10.1016/j.jpowsour.2015.07.049

    64. [64]

      (64) Seo, D.; Song, H. J. Am. Chem. Soc. 2009, 131, 18210. doi: 10.1021/ja907640h

    65. [65]

      (65) Straney, P. J.; Marbella, L. E.; Andolina, C. M.; Nuhfer, N. T.; Millstone, J. E. J. Am. Chem. Soc. 2014, 136, 7873. doi: 10.1021/ja504294p

    66. [66]

      (66) Wang, Q. Y.; Cui, X. Q.; Guan, W. M.; Zhang, L.; Fan, X. F.; Shi, Z.; Zheng, W. T. J. Power Sources 2014, 269, 152.

    67. [67]

      (67) Chen, J. Y.;Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. Y.; Xia, Y. N. Nano Lett. 2005, 5, 2058. doi: 10.1021/nl051652u

    68. [68]

      (68) Bansal, V.; O′Mullane, A. P.; Bhargava, S. K. Electrochem. Commun. 2009, 11, 1639. doi: 10.1016/j.elecom.2009.06.018

    69. [69]

      (69) Zhang, W. Q.; Yang, J. Z.; Lu, X. M. ACS Nano 2012, 6, 7397. doi: 10.1021/nn302590k

    70. [70]

      (70) Kim, Y.; Kim, H.; Kim, W. B. Electrochem. Commun. 2014, 46, 36. doi: 10.1016/j.elecom.2014.06.007

    71. [71]

      (71) Tsuji, M.; Hamasaki, M.; Yajima, A.; Hattori, M.; Tsuji, T.; Kawazumi, H. Mater. Lett. 2014, 121, 113. doi: 10.1016/j.matlet.2014.01.093

    72. [72]

      (72) Kim, M. R.; Lee, D. K.; Jang, D. J. Appl. Catal. B: Environ. 2011, 103, 253. doi: 10.1016/j.apcatb.2011.01.036

    73. [73]

      (73) Lin, C. T.; Shiao, M. H.; Chang, M. N.; Chu, N.; Chen, Y.W.; Peng, Y. H.; Liao, B. H.; Huang, H. J.; Hsiao, C. N.; Tseng, F. G. Nanoscale Res. Lett. 2015, 10, 74. doi: 10.1186/s11671-015-0791-9

    74. [74]

      (74) Ma, D.; Tang, X.; Guo, M.; Lu, H.; Xu, X. Ionics 2015, 21, 1417. doi: 10.1007/s11581-014-1290-1

    75. [75]

      (75) Hou, P. F.; Cui, P. L.; Liu, H.; Li, J. L.; Yang, J. Nano Res. 2015, 8, 512. doi: 10.1007/s12274-014-0663-0

    76. [76]

      (76) Vasquez, Y.; Sra, A. K.; Schaak, R. E. J. Am. Chem. Soc. 2005, 127, 12504. doi: 10.1021/ja054442s

    77. [77]

      (77) Zhou, X.W.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. J. Nanosci. Nanotechnol. 2009, 9, 2392. doi: 10.1166/jnn.2009.SE34

    78. [78]

      (78) Zhou, X.W.; Zhang, R. H. Sun, S. G. Acta Phys.-Chim. Sin. 2010, 26, 3360. [周新文, 张荣华, 孙世刚. 物理化学学报, 2010, 26, 3360.] doi: 10.3866/PKU.WHXB20101125

    79. [79]

      (79) Zhou, X.W.; Zhang, R. H.; Zeng, D. M.; Sun, S. G. J. Solid State Chem. 2010, 183, 1340. doi: 10.1016/j.jssc.2010.04.003

    80. [80]

      (80) Zhou, X.W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文, 甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031

    81. [81]

      (81) Sun, Q.;Wang, S. G.;Wang, R. M. J. Phys. Chem. C 2012, 116, 5352. doi: 10.1021/jp210144p

    82. [82]

      (82) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochem. Commun. 2013, 30, 71. doi: 10.1016/j.elecom.2013.02.010

    83. [83]

      (83) Xia, B. Y.;Wu, H. B.;Wang, X.; Lou, X.W. J. Am. Chem. Soc. 2012, 134, 13934. doi: 10.1021/ja3051662

    84. [84]

      (84) Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Chem. Commun. 2015, 51, 9722. doi: 10.1039/C5CC03190G

    85. [85]

      (85) Du, C. Y.; Chen, M.;Wang, W. G.; Tan, Q.; Xiong, K.; Yin, G. P. J. Power Sources 2013, 240, 630. doi: 10.1016/j.jpowsour.2013.05.023

    86. [86]

      (86) Su, L.; Shrestha, S.; Zhang, Z. H.; Mustain, W.; Lei, Y. J. Mater. Chem. A 2013, 1, 12293. doi: 10.1039/c3ta13097e

    87. [87]

      (87) Liu, J.; Xu, C.; Liu, C.;Wang, F.; Liu, H.; Ji, J.; Li, Z. Electrochim. Acta 2015, 152, 425. doi: 10.1016/j.electacta.2014.11.133

    88. [88]

      (88) Wang, M.; Zhang, W. M.;Wang, J. Z.; Minett, A.; Lo, V.; Liu, H. K.; Chen, J. J. Mater. Chem. A 2013, 1, 2391. doi: 10.1039/c2ta01470j

    89. [89]

      (89) Zhou, X.W.; Zhang, R. H.; Zhou, Z. Y.; Sun, S. G. J. Power Sources 2011, 196, 5844. doi: 10.1016/j.jpowsour.2011.02.088

    90. [90]

      (90) Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.;Wang, R. M. J. Mater. Chem. A 2015, 3, 1031. doi: 10.1039/C4TA05812G

    91. [91]

      (91) Hu, Y. J.;Wu, P.; Zhang, H.; Cai, C. X. Electrochim. Acta 2012, 85, 314.

    92. [92]

      (92) Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. ACS Catal. 2015, 5, 5333. doi: 10.1021/acscatal.5b01248

    93. [93]

      (93) Sun, Y.; Yang, H.; Yu, X.; Meng, H.; Xu, X. RSC Adv. 2015, 5, 70387. doi: 10.1039/C5RA13383A

    94. [94]

      (94) Bae, S. J.; Yoo, S. J.; Lim, Y.; Kim. S.; Lim, Y.; Choi, J.; Nahm, K. S.; Hwang, S. J.; Lim, T. H.; Kim, S. K.; Kim, P. J. Mater. Chem. 2012, 22, 8820. doi: 10.1039/c2jm16827h

    95. [95]

      (95) Dubau, L.; Lopez-Haro, M.; Durst, J.; Guetaz, L.; Bayle- Guillemaud, P.; Chatenet, M.; Maillard, F. J. Mater. Chem. A 2014, 2, 18497. doi: 10.1039/C4TA03975K

    96. [96]

      (96) Chen, D. J.; Zhou, Z. Y.;Wang, Q.; Xiang, D. M.; Tian, N.; Sun, S. G. Chem. Commun. 2010, 46, 4252. doi: 10.1039/c002964e

    97. [97]

      (97) Zhao, X.; Zhu, J. B.; Cai, W.W.; Xiao, M. L.; Liang, L.; Liu, C. P.; Xing, W. RSC Adv. 2013, 3, 1763.

    98. [98]

      (98) Liu, Y.; Zhang, S.; Ren, X.;Wang, Y.; Yan, L.;Wei, Q.; Du, B. RSC Adv. 2015, 5, 57346. doi: 10.1039/C5RA07397A

    99. [99]

      (99) Zheng, J.; Cullen, D. A.; Forest, R. V.;Wittkopf, J.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. ACS Catal. 2015, 5, 1468. doi: 10.1021/cs501449y

    100. [100]

      (100) Ye, F.; Yang, J. H.; Hu, W.W.; Liu, H.; Liao, S. J.; Zeng, J. H.; Yang, J. RSC Adv. 2012, 2, 7479. doi: 10.1039/c2ra21140h

    101. [101]

      (101) Luo, B. M.; Yan, X. B.; Chen, J. G.; Xu, S.; Xue, Q. J. Int. J. Hydrogen Energy 2013, 38, 13011. doi: 10.1016/j.ijhydene.2013.03.139

    102. [102]

      (102) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 2337. [颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26, 2337.] doi: 10.3866/PKU.WHXB20100835

    103. [103]

      (103) Hong, W.; Shang, C. S.;Wang, J.;Wang, E. K. Nanoscale 2015, 7, 9985. doi: 10.1039/C5NR01679G

    104. [104]

      (104) Hao, Y.; Yang, Y.; Hong, L.; Yuan, J.; Niu, L.; Gui, U. ACS Appl. Mater. Inter. 2014, 6, 21986. doi: 10.1021/am5047747

    105. [105]

      (105) Chen, Y. X.; Lai, S. Q.; Jiang, S. L.; Liu, Y.; Fu, C. L.; Li, A. Q.; Chen, Y. Y.; Lai, X. D.; Hu, J. Q. Mater. Lett. 2015, 157, 15. doi: 10.1016/j.matlet.2015.05.009

    106. [106]

      (106) Guo, Z. G.; Dai, X. P.; Yang, Y.; Zhang, Z. C.; Zhang, X.; Mi, S. Q.; Xu, K.; Li, Y. F. J. Mater. Chem. A 2013, 1, 13252.

    107. [107]

      (107) Ryu, J.; Choi, J.; Lim, D. H.; Seo, H. L.; Lee, S. Y.; Sohn, Y.; Park, J. H.; Kim, H. J.; Hong, S. A.; Kim, P.; Yoo, S. J. Appl. Catal. B: Environ. 2015, 174, 526.

    108. [108]

      (108) Shviro, M.; Polani, S.; Zitoun, D. Nanoscale 2015, 7, 13521.

    109. [109]

      (109) An, L.; Zhu, M.; Dai, B.; Yu, F. Electrochim. Acta 2015, 176, 222. doi: 10.1016/j.electacta.2015.06.135

    110. [110]

      (110) Bai, Z.; Huang, R.; Niu, L.; Zhang, Q.; Yang, L.; Zhang, J. Catalysts 2015, 5, 747. doi: 10.3390/catal5020747

    111. [111]

      (111) Peng, C.; Hu, Y.; Liu, M.; Zheng, Y. J. Power Sources 2015, 278, 69. doi: 10.1016/j.jpowsour.2014.12.056

    112. [112]

      (112) Li, R.S.; Hao, H.; Cai, W. B.; Huang, T.; Yu, A. S. Electrochem. Commun. 2010, 12, 901. doi: 10.1016/j. elecom.2010.04.016

    113. [113]

      (113) Hong, W.;Wang, J.;Wang, E. RSC Adv. 2015, 5, 46935. doi: 10.1039/C5RA08300A

    114. [114]

      (114) Shang, C.; Hong, W.;Wang, J.;Wang, E. J. Power Sources 2015, 285, 12. doi: 10.1016/j.jpowsour.2015.03.092

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(421)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return