Citation: HU Shu, GAI Bao-Dong, CAO Zhan-Li, GUO Jing-Wei, WANG Fan. Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 848-854. doi: 10.3866/PKU.WHXB201601151 shu

Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes

  • Corresponding author: GUO Jing-Wei, 
  • Received Date: 28 October 2015
    Available Online: 13 January 2016

    Fund Project: 国家自然科学基金(11475177, 11304311, 61505210, 61405197)资助项目 (11475177, 11304311, 61505210, 61405197)

  • The excimer-pumped sodium laser (XPNaL) is very important for its application in sodium guide star. However, the absorption coefficients (for the pumping source) of traditional excimer pairs, such as Na-He and Na-Ar, are very small. In this work, four systems (Na-Ar, Na-Xe, Na-CH4, and Na-C2H6) are investigated based on both fluorescence experiment and theoretical binding energies obtained from highly accurate quantum chemistry calculations to determine better excimer pairs. The experiment results show that the peak area ratio of fluorescence intensity curves for the excimer pairs of Na-Ar, Na-Xe, Na-CH4, and Na-C2H6 was 1.0 : 6.4 : 4.9 : 10.4. Meanwhile, using the CCSD(T) approach and basis set extrapolation, binding energies for these four systems were calculated as 52.8, 124.5, 117.7, and 150.0 cm-1, respectively. Therefore, predication by quantum chemistry calculation was consistent with experimental results. The Na-C2H6 system was found to be the most efficient system both experimentally and theoretically, and has the potential to be used in the development of a high power XPNaL. This work also demonstrates that the binding energy from highly accurate quantum chemistry calculations with a large basis set is a very good criterion for the selection of excimer pairs for the excimer-pumped alkali laser (XPAL).
  • 加载中
    1. [1]

      (1) Max, C. E.; Olivier, S. S.; Friedman, H.W.; An, J.; Avicola, K.; Beeman, B. V.; Bissinger, H. D.; Brase, J. M.; Erbert, G. V.; Gavel, D. T.; Kanz, K.; Liu, M. C.; Macintosh, B.; Neeb, K. P.; Patience, J.;Waltjen, K. E. Science 1997, 277, 1649. doi: 10.1126/science.277.5332.1649

    2. [2]

      (2) Rochester, S. M.; Otarola, A.; Boyer, C.; budker, D.; Ellerbroek, B.; Holzlöhner, R.;Wang, L. J. Opt. Soc. Am. B 2012, 29 (8), 2176. doi: 10.1364/JOSAB.29.002176

    3. [3]

      (3) Lee, I.; Jalali, M.; Vanasse, N.; Prezkuta, Z.; Groff, K.; Roush, J.; Rogers, N.; Andrews, E.; Moule, G.; Tiemann, B.; Hankla, A. K.; Adkins, S. M.; d'Orgeville. C. Proc. SPIE Adaptive Optics Systems 2008, 7015, 70150N. doi: 10.1117/12.790534

    4. [4]

      (4) Wang, P.; Xie, S.; Bo, Y.;Wang, B.; Zuo, J.;Wang, Z.; Shen, Y.; Zhang, F.;Wei, K.; Jin, K.; Xu, Y.; Xu, J.; Peng, Q.; Zhang, J.; Lei, W.; Cui, D.; Zhang, Y.; Xu, Z. Chin. Phys. B 2014, 23 (11), 094208. doi: 10.1088/1674-1056/23/9/094208

    5. [5]

      (5) Cong, Z.; Zhang, X.;Wang, Q.; Chen, X.; Fan, S.; Liu, Z.; Zhang, H.; Tao, X.;Wang, J.; Zhao, H.; Li, S. Laser Phys. Lett. 2010, 7 (12), 862. doi: 10.1002/lapl.201010076

    6. [6]

      (6) Duering, M.; Kolev, V.; Luther-Davies, B. Opt. Express 2009, 17 (2), 437. doi: 10.1364/OE.17.000437

    7. [7]

      (7) Dhiflaoui, J.; Berriche, H.; Heaven, M. C. AIP Conf. Proc. 2011, 1370, 234. doi: 10.1063/1.3638107

    8. [8]

      (8) Merritt, J. M.; Han, J.; Chang, T.; Heaven, M. C. Proc. SPIE 2009, 7196, 71960H. doi: 10.1117/12.815155

    9. [9]

      (9) Readle, J. D.; Verdeyen, J. T.; Eden, J. G.; Davis, S. J.; Galbally-Kinney, K. L.; Rawlins, W. T.; Kessler, W. J. Opt. Lett. 2009, 34 (23), 3638. doi: 10.1364/OL.34.003638

    10. [10]

      (10) Hewitt, J. D.; Houlahan, T. J., Jr.; Gallagher, J. E.; Carroll, D. L.; Palla, A. D.; Verdeyen, J. T.; Perram, G. P.; Eden, J. G. Appl. Phys. Lett. 2013, 102, 111104. doi: 10.1063/1.4796040

    11. [11]

      (11) Palla, A. D.; Carroll, D. L.; Verdeyen, J. T.; Heaven, M. C. J. Phys. B: At. Mol. Opt. Phys. 2011, 44, 135402. doi: 10.1088/0953-4075/44/13/135402

    12. [12]

      (12) Szudy, J.; Baylis, W. E. J. Quantum Spectrosc. Ra. 1975, 15 (7-8), 641. doi: 10.1016/0022-4073(75)90032-1

    13. [13]

      (13) Markov, R. V.; Plekhanov, A. I.; Shalagin, A. M. Phys. Rev. Lett. 2002, 88 (21), 213601. doi: 10.1103/PhysRevLett.88.213601

    14. [14]

      (14) Chung, H. K.; Shurgalin, M.; Babb, J. F. AIP Conf. Proc. 2002, 645, 211. doi: 10.1063/1.1525457

    15. [15]

      (15) Alioua, K.; Bouledroua, M.; Allouche, A. R.; Aubert-Frecon, M. J. Phys. B: At. Mol. Opt. Phys. 2008, 41 (17), 175102. doi: 10.1088/0953-4075/41/17/175102

    16. [16]

      (16) Atkins, P.; De Paula, J. Physical Chemistry, 8th ed.; Oxford University Press: Oxford, UK, 2006; p 634.

    17. [17]

      (17) Martin, W. C.; Musgrove, A.; Kotochigova, S.; Sansonetti, J. E. 2011, Ground Levels and Ionization Energies for the Neutral Atoms (version 1.3). National Institute of Standards and Technology, Gaithersburg, MD. [Online] Available: http://physics.nist.gov/IonEnergy [Wednesday, 22-Apr-2015, 21 : 45 : 55 EDT].

    18. [18]

      (18) Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Chem. Phys. 1997, 223 (1), 59. doi: 10.1016/S0301-0104(97)00145-6

    19. [19]

      (19) Langhoff, P.W.; Karplus, M. J. Opt. Soc. Am. 1969, 59 (7), 863. doi: 10.1364/JOSA.59.000863

    20. [20]

      (20) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90 (2), 1007. doi: 10.1063/1.456153

    21. [21]

      (21) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100 (4), 2975. doi: 10.1063/1.466439

    22. [22]

      (22) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98 (2), 1358. doi: 10.1063/1.464303

    23. [23]

      (23) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119 (21), 11113. doi: 10.1063/1.1622924

    24. [24]

      (24) Peterson, K. A.; Yousaf, K. E. J. Chem. Phys. 2010, 133 (17), 174116. doi: 10.1063/1.3503659

    25. [25]

      (25) Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wires Comput. Mol. Sci. 2012, 2, 242; MOLPRO, version 2012.1, http://www.molpro.net. doi: 10.1002/wcms.82

    26. [26]

      (26) Liang, Y. N.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (8), 1447. [梁艳妮, 王繁. 物理化学学报, 2014, 30 (8), 1447.] doi: 10.3866/PKU.WHXB201405302

    27. [27]

      (27) Cao, Z. L.;Wang, Z. F.; Yang, M. L.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (3), 431. [曹战利, 王治钒, 杨明理, 王繁. 物理化学学报, 2014, 30 (3), 431.] doi: 10.3866/PKU.WHXB201401023

    28. [28]

      (28) Sverdlov, L. M.; Kovner, M. A.; Krainov, E. P. Vibrational Spectra of Polyatomic Molecule;Wiley: New York, 1974.

    29. [29]

      (29) Benran, K. Bond Lengths and Angles in Gas-Phase Molecules, 3rd ed. II; Maruzen Company, LTD.: Tokyo, Japan, 1984; p 649.

    30. [30]

      (30) Baumann, P.; Zimmermann, D.; Brühl, R. J. Mol. Spec. 1992, 155 (2), 277. doi: 10.1016/0022-2852(92)90517-R

    31. [31]

      (31) Schwarzhans, D.; Zimmermann, D. Eur. Phys. J. D 2003, 22 (2), 193. doi: 10.1140/epjd/e2002-00242-8

    32. [32]

      (32) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19 (4), 553. doi: 10.1080/00268977000101561

    33. [33]

      (33) Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132 (11), 114301. doi: 10.1063/1.3354976

  • 加载中
    1. [1]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    20. [20]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

Metrics
  • PDF Downloads(0)
  • Abstract views(329)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return