Citation: HU Shu, GAI Bao-Dong, CAO Zhan-Li, GUO Jing-Wei, WANG Fan. Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 848-854. doi: 10.3866/PKU.WHXB201601151 shu

Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes

  • Corresponding author: GUO Jing-Wei, 
  • Received Date: 28 October 2015
    Available Online: 13 January 2016

    Fund Project: 国家自然科学基金(11475177, 11304311, 61505210, 61405197)资助项目 (11475177, 11304311, 61505210, 61405197)

  • The excimer-pumped sodium laser (XPNaL) is very important for its application in sodium guide star. However, the absorption coefficients (for the pumping source) of traditional excimer pairs, such as Na-He and Na-Ar, are very small. In this work, four systems (Na-Ar, Na-Xe, Na-CH4, and Na-C2H6) are investigated based on both fluorescence experiment and theoretical binding energies obtained from highly accurate quantum chemistry calculations to determine better excimer pairs. The experiment results show that the peak area ratio of fluorescence intensity curves for the excimer pairs of Na-Ar, Na-Xe, Na-CH4, and Na-C2H6 was 1.0 : 6.4 : 4.9 : 10.4. Meanwhile, using the CCSD(T) approach and basis set extrapolation, binding energies for these four systems were calculated as 52.8, 124.5, 117.7, and 150.0 cm-1, respectively. Therefore, predication by quantum chemistry calculation was consistent with experimental results. The Na-C2H6 system was found to be the most efficient system both experimentally and theoretically, and has the potential to be used in the development of a high power XPNaL. This work also demonstrates that the binding energy from highly accurate quantum chemistry calculations with a large basis set is a very good criterion for the selection of excimer pairs for the excimer-pumped alkali laser (XPAL).
  • 加载中
    1. [1]

      (1) Max, C. E.; Olivier, S. S.; Friedman, H.W.; An, J.; Avicola, K.; Beeman, B. V.; Bissinger, H. D.; Brase, J. M.; Erbert, G. V.; Gavel, D. T.; Kanz, K.; Liu, M. C.; Macintosh, B.; Neeb, K. P.; Patience, J.;Waltjen, K. E. Science 1997, 277, 1649. doi: 10.1126/science.277.5332.1649

    2. [2]

      (2) Rochester, S. M.; Otarola, A.; Boyer, C.; budker, D.; Ellerbroek, B.; Holzlöhner, R.;Wang, L. J. Opt. Soc. Am. B 2012, 29 (8), 2176. doi: 10.1364/JOSAB.29.002176

    3. [3]

      (3) Lee, I.; Jalali, M.; Vanasse, N.; Prezkuta, Z.; Groff, K.; Roush, J.; Rogers, N.; Andrews, E.; Moule, G.; Tiemann, B.; Hankla, A. K.; Adkins, S. M.; d'Orgeville. C. Proc. SPIE Adaptive Optics Systems 2008, 7015, 70150N. doi: 10.1117/12.790534

    4. [4]

      (4) Wang, P.; Xie, S.; Bo, Y.;Wang, B.; Zuo, J.;Wang, Z.; Shen, Y.; Zhang, F.;Wei, K.; Jin, K.; Xu, Y.; Xu, J.; Peng, Q.; Zhang, J.; Lei, W.; Cui, D.; Zhang, Y.; Xu, Z. Chin. Phys. B 2014, 23 (11), 094208. doi: 10.1088/1674-1056/23/9/094208

    5. [5]

      (5) Cong, Z.; Zhang, X.;Wang, Q.; Chen, X.; Fan, S.; Liu, Z.; Zhang, H.; Tao, X.;Wang, J.; Zhao, H.; Li, S. Laser Phys. Lett. 2010, 7 (12), 862. doi: 10.1002/lapl.201010076

    6. [6]

      (6) Duering, M.; Kolev, V.; Luther-Davies, B. Opt. Express 2009, 17 (2), 437. doi: 10.1364/OE.17.000437

    7. [7]

      (7) Dhiflaoui, J.; Berriche, H.; Heaven, M. C. AIP Conf. Proc. 2011, 1370, 234. doi: 10.1063/1.3638107

    8. [8]

      (8) Merritt, J. M.; Han, J.; Chang, T.; Heaven, M. C. Proc. SPIE 2009, 7196, 71960H. doi: 10.1117/12.815155

    9. [9]

      (9) Readle, J. D.; Verdeyen, J. T.; Eden, J. G.; Davis, S. J.; Galbally-Kinney, K. L.; Rawlins, W. T.; Kessler, W. J. Opt. Lett. 2009, 34 (23), 3638. doi: 10.1364/OL.34.003638

    10. [10]

      (10) Hewitt, J. D.; Houlahan, T. J., Jr.; Gallagher, J. E.; Carroll, D. L.; Palla, A. D.; Verdeyen, J. T.; Perram, G. P.; Eden, J. G. Appl. Phys. Lett. 2013, 102, 111104. doi: 10.1063/1.4796040

    11. [11]

      (11) Palla, A. D.; Carroll, D. L.; Verdeyen, J. T.; Heaven, M. C. J. Phys. B: At. Mol. Opt. Phys. 2011, 44, 135402. doi: 10.1088/0953-4075/44/13/135402

    12. [12]

      (12) Szudy, J.; Baylis, W. E. J. Quantum Spectrosc. Ra. 1975, 15 (7-8), 641. doi: 10.1016/0022-4073(75)90032-1

    13. [13]

      (13) Markov, R. V.; Plekhanov, A. I.; Shalagin, A. M. Phys. Rev. Lett. 2002, 88 (21), 213601. doi: 10.1103/PhysRevLett.88.213601

    14. [14]

      (14) Chung, H. K.; Shurgalin, M.; Babb, J. F. AIP Conf. Proc. 2002, 645, 211. doi: 10.1063/1.1525457

    15. [15]

      (15) Alioua, K.; Bouledroua, M.; Allouche, A. R.; Aubert-Frecon, M. J. Phys. B: At. Mol. Opt. Phys. 2008, 41 (17), 175102. doi: 10.1088/0953-4075/41/17/175102

    16. [16]

      (16) Atkins, P.; De Paula, J. Physical Chemistry, 8th ed.; Oxford University Press: Oxford, UK, 2006; p 634.

    17. [17]

      (17) Martin, W. C.; Musgrove, A.; Kotochigova, S.; Sansonetti, J. E. 2011, Ground Levels and Ionization Energies for the Neutral Atoms (version 1.3). National Institute of Standards and Technology, Gaithersburg, MD. [Online] Available: http://physics.nist.gov/IonEnergy [Wednesday, 22-Apr-2015, 21 : 45 : 55 EDT].

    18. [18]

      (18) Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Chem. Phys. 1997, 223 (1), 59. doi: 10.1016/S0301-0104(97)00145-6

    19. [19]

      (19) Langhoff, P.W.; Karplus, M. J. Opt. Soc. Am. 1969, 59 (7), 863. doi: 10.1364/JOSA.59.000863

    20. [20]

      (20) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90 (2), 1007. doi: 10.1063/1.456153

    21. [21]

      (21) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100 (4), 2975. doi: 10.1063/1.466439

    22. [22]

      (22) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98 (2), 1358. doi: 10.1063/1.464303

    23. [23]

      (23) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119 (21), 11113. doi: 10.1063/1.1622924

    24. [24]

      (24) Peterson, K. A.; Yousaf, K. E. J. Chem. Phys. 2010, 133 (17), 174116. doi: 10.1063/1.3503659

    25. [25]

      (25) Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wires Comput. Mol. Sci. 2012, 2, 242; MOLPRO, version 2012.1, http://www.molpro.net. doi: 10.1002/wcms.82

    26. [26]

      (26) Liang, Y. N.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (8), 1447. [梁艳妮, 王繁. 物理化学学报, 2014, 30 (8), 1447.] doi: 10.3866/PKU.WHXB201405302

    27. [27]

      (27) Cao, Z. L.;Wang, Z. F.; Yang, M. L.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (3), 431. [曹战利, 王治钒, 杨明理, 王繁. 物理化学学报, 2014, 30 (3), 431.] doi: 10.3866/PKU.WHXB201401023

    28. [28]

      (28) Sverdlov, L. M.; Kovner, M. A.; Krainov, E. P. Vibrational Spectra of Polyatomic Molecule;Wiley: New York, 1974.

    29. [29]

      (29) Benran, K. Bond Lengths and Angles in Gas-Phase Molecules, 3rd ed. II; Maruzen Company, LTD.: Tokyo, Japan, 1984; p 649.

    30. [30]

      (30) Baumann, P.; Zimmermann, D.; Brühl, R. J. Mol. Spec. 1992, 155 (2), 277. doi: 10.1016/0022-2852(92)90517-R

    31. [31]

      (31) Schwarzhans, D.; Zimmermann, D. Eur. Phys. J. D 2003, 22 (2), 193. doi: 10.1140/epjd/e2002-00242-8

    32. [32]

      (32) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19 (4), 553. doi: 10.1080/00268977000101561

    33. [33]

      (33) Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132 (11), 114301. doi: 10.1063/1.3354976

  • 加载中
    1. [1]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    2. [2]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    10. [10]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(0)
  • Abstract views(273)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return