Citation: XIE Wei, XU Ze-Ren, WANG Ming, XU Si-Chuan. Molecular Dynamics Simulation for Levo-Benzedrine to Transmit through Molecular Channels within D3R[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 907-920. doi: 10.3866/PKU.WHXB201601141
-
Levo-benzedrine (also known as L-benzedrine or RAT) acts in dopamine receptors of the central nerve cell. In a clinical setting, RAT is used to treat a variety of diseases; however, it can also result in physical dependence and addiction. To investigate the pharmacology and addiction mechanism of RAT as a medication, we have obtained the optimized structure of the dopamine Ⅲ receptor (D3R) complex protein with RAT. On the basis of this structure, by using the method of potential mean force (PMF) with umbrella sampling and the simulated phospholipid bilayer membrane (also known as the POPC bilayer membrane), the molecular dynamics simulation was performed to obtain the trajectories with the changes of free energy on the structure for RAT to move along the molecular channels within D3R. The change of free energy for RAT to transfer toward the outside of the cell along the functioning molecular channel within D3R is 91.4 kJ·mol-1. The change of free energy for RAT to transfer into the POPC bilayer membrane along the protecting molecular channel within D3R is 117.7 kJ·mol-1. These results suggest that RAT is more likely to exert its molecular functions and to increase the release of functioning dopamine molecules by transferring along the functioning molecular channel within D3R, which result in a variety of functional effects by RAT including dependence and addiction. The obtained results show that the pharmacology and addiction mechanism of RAT as a medication are closely related to the molecular dynamics and mechanism for RAT to transfer along molecular channels within dopamine receptors.
-
Keywords:
- L-Benzedrine,
- D3R,
- POPC,
- Molecular dynamics simulation,
- Free energy
-
-
[1]
(1) Bunzow, J. R.; Van Tol, H. H. M.; Grandy, D. K.; Albert, P.; Salon, J.; Christie, M. Nature 1988, 336, 783. doi: 10.1038/336783a0
-
[2]
(2) Dearry, A.; Gingrich, J. A.; Falardeau, P.; Fremeau, R. T.; Bates, M. D.; Caron, M. G. Nature 1990, 347, 72. doi: 10.1038/347072a0
-
[3]
(3) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Nature 1990, 347, 146. doi: 10.1038/347146a0
-
[4]
(4) Van Tol, H. H.; Bunzow, J. R.; Guan, H. C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature 1991, 350, 610. doi: 10.1038/350610a0
-
[5]
(5) Sunahara, R. K.; Guan, H. C.; O'Dowd, B. F.; Seeman, P.; Laurier, L. G.; Ng, G.; George, S. R.; Torchia, J.; Van Tol, H. H.; Niznik, H. B. Nature 1991, 350, 614. doi: 10.1038/350614a0
-
[6]
(6) Kebabian, J.W.; Calne, D. B. Nature 1979, 277 (5692), 93. doi: 10.1038/277093a0
-
[7]
(7) Xu, M.; Koeltzo, T. E.; Santiago, G. T.; Moratalla, R.; Cooper, D. C.; Hu, X. T.; White, N. M.; Graybiel, A. M.; White, F. J.; Tonegawa, S. Neuron 1997, 19 (4), 837. doi: 10.1016/S0896-6273(00)80965-4
-
[8]
(8) Bontempi, B.; Sharp, F. R. J. Neurosci. 1997, 17, 8596.
-
[9]
(9) Plante-Bordeneuve, V.; Taussig, D.; Thomas, F.; Said, G.; Wood, N.W.; Marsden, C. D. Neurology 1997, 48, 1589. doi: 10.1212/WNL.48.6.1589
-
[10]
(10) Li, F.; Shu, S. Y.; Bao, X. M. Chinese Journal of Neuroscience 2003, 19 (6), 405. [李凡, 舒斯云, 包新民. 中国神经科学杂志, 2003, 19 (6), 405.]
-
[11]
(11) Carlsson, A.;Waters, N.;Waters, S.; Carlsson, M. L. Brain Research Reviews 2000, 31, 342. doi: 10.1016/S0165-0173(99)00050-8
-
[12]
(12) Suri, R. E.; Bargas, J.; Arbib, M, A. Neuroscience 2001, 103, 65. doi: 10.1016/S0306-4522(00)00554-6
-
[13]
(13) Salum, C.; Roque, S. A.; Pickering, A. Neurocomputing 1999, 26-27, 845. doi: 10.1016/S0925-2312(98)00129-5
-
[14]
(14) Xu, S. C.; Shi, G. J.; Chi, S. M. The Active Site Residues and the Molecular Channels for Dopamine within D3R Membrane Protein. The 28thCCS (Chinese Chemical Society) Congress, Sichuan University, Chengdu, China, April 13-16, 2012.
-
[15]
(15) Bian, F. Y.; Shi, G. J.; Chi, S. M.; Xu, S. C. The Perspective Insight into the Pathology of Parkinsonism Using the Molecular Channel Theory of Dopamine inside its Receptor Membrane Protein. Chinese Chemical Society at the Second National Conference on Bio-physical Chemistry (NCBPC2) and the International Forum on Development of Chinese Bio-physical Chemistry, Wuhan University, Wuhan, China, Oct 15-18, 2012.
-
[16]
(16) Zhang, J.W.; Bian, F. Y.; Shi, G. J.; Xu, S. C. Acta Phys. -Chim. Sin. 2014, 30, 183. [张继伟, 卞富永, 施国军, 徐四川. 物理化学学报, 2014, 30, 183.] doi: 10.3866/PKU.WHXB201311281
-
[17]
(17) Chien, E. Y. T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Science 2010, 330, 1091. doi: 10.1126/science.1197410
-
[18]
(18) Roth, C. B.; Hanson, M. A.; Stevens, R. C. J. Mol. Biol. 2008, 376, 1305. doi: 10.1016/j.jmb.2007.12.028
-
[19]
(19) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.;Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. doi: 10.1126/science.1150609
-
[20]
(20) DePaulis, T.; Hall, H.; Ogren, S. Eur. J. Med. Chem. Chim. Ther. 1985, 20, 273.
-
[21]
(21) Griffon, N.; Pilon, C.; Sautel, F.; Schwartz, J. C.; Sokoloff, P. J. Neural. Transm. 1996, 103, 1163. doi: 10.1007/BF01271201
-
[22]
(22) Jin, Y.;Wang, Y.; Bian, F. Y.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K.; Xu, S. C. Acta Phys. -Chim. Sin. 2011, 27, 2432. [金毅, 王悦, 卞富永, 史强, 葛茂发, 王树, 张兴康, 徐四川. 物理化学学报, 2011, 27, 2432.] doi: 10.3866/PKU.WHXB20111001
-
[23]
(23) Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C. Biophys. J. 2005, 88, 1818. doi: 10.1529/biophysj.104.052399
-
[24]
(24) Janosi, L.; Gorfe, A. A. J. Chem. Theory Comput. 2010, 6, 3267. doi: 10.1021/ct100381g
-
[25]
(25) Su, Z. Y.;Wang, Y. T. J. Phys. Chem. B 2011, 115, 796. doi: 10.1021/jp107599v
-
[26]
(26) Dunkin, C. M.; Pokorny, A.; Almeida, P. F.; Lee, H. S. J. Phys. Chem. B 2011, 115, 1188. doi: 10.1021/jp107763b
-
[27]
(27) Chen, R.; Poger, D.; Mark, A. E. J. Phys. Chem. B 2011, 115, 1038. doi: 10.1021/jp110002q
-
[28]
(28) Merlino, A.; Vitiello, G.; Grimaldi, M.; Sica, F.; Busi, E.; Basosi, R.; D'Ursi, A. M.; Fragneto, G.; Paduano, L.; D'Errico, G. J. Phys. Chem. B 2012, 116, 401. doi: 10.1021/jp204781a
-
[29]
(29) Yamamoto, E.; Akimoto, T.; Shimizu, H.; Hirano, Y.; Yasui, M.; Yasuoka, K. J. Phys. Chem. B 2012, 116, 8989. doi: 10.1021/jp303330c
-
[30]
(30) Polyansky, A. A.; Volynsky, P. E.; Nolde, D. E.; Arseniev, A. S.; Efremov, R. G. J. Phys. Chem. B 2005, 109, 15052. doi: 10.1021/jp0510185
-
[31]
(31) Puri, A.; Jang, H.; Yavlovich, A.; Masood, M. A.; Veenstra, T. D.; Luna, C.; Aranda-Espinoza, H.; Nussinov, R.; Blumenthal, R. Langmuir 2011, 27, 15120. doi: 10.1021/la203453x
-
[32]
(32) Manna, M.; Mukhopadhyay, C. Langmuir 2009, 25, 12235. doi: 10.1021/la902660q
-
[33]
(33) Hartshorn, M.; Jewett, C. M.; Brozik, J. A. Langmuir 2010, 26, 2609. doi: 10.1021/la904308g
-
[34]
(34) Mondal, S.; Mukhopadhyay, C. Langmuir 2008, 24, 10298. doi: 10.1021/la8015589
-
[35]
(35) Soemo, A. R.;Wirth, M. J. Langmuir 2010, 26, 2196. doi: 10.1021/la9038914
-
[36]
(36) Payandeh, J.; Gamal El-Din, T. M.; Scheuer, T.; Zheng, N.; Catterall, W. A. Nature 2012, 486, 135. doi: 10.1038/nature11077
-
[37]
(37) Jönsson, P.; Jonsson, M. P.; Höök, F. Nano Lett. 2010, 10, 1900. doi: 10.1021/nl100779k
-
[38]
(38) Carr, R.;Weinstock, I. A.; Sivaprasadarao, A.; Müller, A.; Aksimentiev, A. Nano Lett. 2008, 8, 3916. doi: 10.1021/nl802366k
-
[39]
(39) Marrink, S. J.; Lindahl, E.; Edholm, O.; Mark, A. E. J. Am. Chem. Soc. 2001, 123 (35), 8638. doi: 10.1021/ja0159618
-
[40]
(40) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. doi: 10.1002/jcc.540130805
-
[41]
(41) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revison B.01; Gaussian Inc.: Pittsburgh PA, 2003.
-
[42]
(42) Lang, P. T.; Moustakas, D.; Brozell, S.; Carrascal, N.; Mukherjee, S.; Pegg, S.; Kuntz, I. DOCK 6.1; University of California: San Francisco, 2006.
-
[43]
(43) Shi, G. J.;Wang, Y.; Jin, Y.; Chi, S. M.; Shi, Q.; Ge, M. F; Zhang, X. K.; Xu, S. C. J. Biomol. Struct. Dyn. 2012, 30 (5), 559. doi: 10.1080/07391102.2012.687522
-
[44]
(44) Wang, Y.; Bian, F. Y.; Deng, S. R.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K.; Xu, S. C. J. Biomol. Struct. Dyn. 2011, 28 (6), 881. doi: 10.1080/07391102.2011.10508615
-
[45]
(45) Xu, S. C.; Chi, S. M.; Jin, Y.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K. J. Mol. Model. 2012, 18 (1), 377. doi: 10.1007/s00894-011-1083-7
-
[46]
(46) Chi, S.; Xie, W.; Zhang, J.; Xu, S. C. J. Biomol. Struct. Dyn. 2015, 33 (10), 2234. doi: 10.1080/07391102.2014.999256
-
[47]
(47) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Computer Physics Communications 1995, 91, 43. doi: 10.1016/0010-4655(95)00042-E
-
[48]
(48) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701. doi: 10.1002/jcc.20291
-
[49]
(49) Hub, J. S.; de Groot, B. L.; Grubmüller, H.; Groenhof, G. J. Chem. Theory Comput. 2014, 10, 381. doi: 10.1021/ct400626b
-
[50]
(50) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5
-
[51]
(51) Xu, S. C.; Deng, S. R.; Ma, L. Y.; Shi, Q.; Ge, M. F.; Zhang, X. K. Acta Phys. -Chim. Sin. 2009, 25, 1290. [徐四川, 邓圣荣, 马丽英, 史强, 葛茂发, 张兴康. 物理化学学报, 2009, 25, 1290.] doi: 10.3866/PKU.WHXB20090701
-
[52]
(52) Daura, X.; Mark, A. E.; Van Gunsteren, W. F. J. Comput. Chem. 1998, 19 (5), 535. doi: 10.1002/(SICI)1096-987X (19980415)19:5<535::AID-JCC6>3.0.CO;2-N
-
[53]
(53) Van Gunsteren, W.; Billeter, S.; Eising, A.; Hunenberger, P.; Kruger, P.; Mark, A.; Tironi, I. Biomolecular Simulation: the Gromos 96 Manual and User Guide, 1st ed.; Hochschulverlag AG an der ETH Zurich: Zurich, Switzerland, 1996.
-
[54]
(54) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
-
[55]
(55) Bian, F. Y.; Zhang, J.W.;Wang, D.; Xu, S. C. Acta Phys. -Chim. Sin. 2014, 30, 1947. [卞富永, 张继伟, 王丹, 徐四川. 物理化学学报, 2014, 30, 1947.] doi: 10.3866/PKU.WHXB201408271
-
[56]
(56) Van der Spoel, D.; Lindahl, E.; Hess, B.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Berendsen, H. J. Gromacs User Manual, version 4.5; www.gromacs.org, 2013.
-
[57]
(57) Hub, J. S.; de Groot, B. L.; van der Spoel, D. J. Chem. Theory Comput. 2010, 6, 3713. doi: 10.1021/ct100494z
-
[58]
(58) Wang, D. The Molecular Dynamics Simulations for Benzedrine to Move through the Phospholipid Bilayer Membrane. M. S. Dissertation, Yunnan University, Kunming, 2015. [王丹. 苯丙胺分子透过磷脂双层膜过程模拟研究[D]. 昆明: 云南大学, 2015.]
-
[59]
(59) Marrink, S. J.; Berendsen, H. J. C. J. Phys. Chem. 1994, 98, 4155. doi: 10.1021/j100066a040
-
[60]
(60) Marrink, S. J.; Jaehnig, F.; Berendsen, H. J. C. Biophys. J. 1996, 71, 632. doi: 10.1016/S0006-3495(96)79264-0
-
[61]
(61) Zahn, D.; Brickmann, J. Chem. Phys. Lett. 2002, 352, 441. doi: 10.1016/S0009-2614(01)01437-3
-
[62]
(62) Bemporad, D.; Essex, J.W.; Luttmann, C. J. Phys. Chem. B 2004, 108, 4875. doi: 10.1021/jp035260s
-
[63]
(63) Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. J. Phys. Chem. B 2004, 108, 9346. doi: 10.1021/jp035998+
-
[64]
(64) Nichols, J.W.; Deamer, D.W. Proc. Nat. Acad. Sci. U. S. A. 1980, 77, 2038. doi: 10.1073/pnas.77.4.2038
-
[65]
(65) Benga, G.; Pop, V. I.; Popescu, O.; Borza, V. J. Biochem. Biophys. Methods 1990, 21, 87. doi: 10.1016/0165-022X(90)90057-J
-
[66]
(66) Jansen, M.; Blume, A. Biophys. J. 1995, 68, 997. doi: 10.1016/S0006-3495(95)80275-4
-
[67]
(67) Andrasko, J.; Forsén, S. Biochem. Biophys. Res. Commun. 1974, 60, 813. doi: 10.1016/0006-291X(74)90313-1
-
[68]
(68) Graziani, Y.; Livne, A. J. Membr. Biol. 1972, 7, 275. doi: 10.1007/BF01867920
-
[69]
(69) Khavrutskii, I. V.; Gorfe, A. A.; Lu, B.; McCammon, J. A. J. Am. Chem. Soc. 2009, 131, 1706. doi: 10.1021/ja8081704
-
[70]
(70) Papahadjopoulos, D.; Nir, S.; Ohki, S. Biochim. Biophys. Acta 1972, 266, 561. doi: 10.1016/0005-2736(72)90354-9
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[4]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[5]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[6]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[9]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[10]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[11]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[16]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[17]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[20]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(248)
- HTML views(16)