Citation: XIE Wei, XU Ze-Ren, WANG Ming, XU Si-Chuan. Molecular Dynamics Simulation for Levo-Benzedrine to Transmit through Molecular Channels within D3R[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 907-920. doi: 10.3866/PKU.WHXB201601141 shu

Molecular Dynamics Simulation for Levo-Benzedrine to Transmit through Molecular Channels within D3R

  • Corresponding author: XU Si-Chuan, 
  • Received Date: 4 November 2015
    Available Online: 14 January 2016

    Fund Project: 国家自然科学基金(21163024, 21563032)资助项目 (21163024, 21563032)

  • Levo-benzedrine (also known as L-benzedrine or RAT) acts in dopamine receptors of the central nerve cell. In a clinical setting, RAT is used to treat a variety of diseases; however, it can also result in physical dependence and addiction. To investigate the pharmacology and addiction mechanism of RAT as a medication, we have obtained the optimized structure of the dopamine Ⅲ receptor (D3R) complex protein with RAT. On the basis of this structure, by using the method of potential mean force (PMF) with umbrella sampling and the simulated phospholipid bilayer membrane (also known as the POPC bilayer membrane), the molecular dynamics simulation was performed to obtain the trajectories with the changes of free energy on the structure for RAT to move along the molecular channels within D3R. The change of free energy for RAT to transfer toward the outside of the cell along the functioning molecular channel within D3R is 91.4 kJ·mol-1. The change of free energy for RAT to transfer into the POPC bilayer membrane along the protecting molecular channel within D3R is 117.7 kJ·mol-1. These results suggest that RAT is more likely to exert its molecular functions and to increase the release of functioning dopamine molecules by transferring along the functioning molecular channel within D3R, which result in a variety of functional effects by RAT including dependence and addiction. The obtained results show that the pharmacology and addiction mechanism of RAT as a medication are closely related to the molecular dynamics and mechanism for RAT to transfer along molecular channels within dopamine receptors.
  • 加载中
    1. [1]

      (1) Bunzow, J. R.; Van Tol, H. H. M.; Grandy, D. K.; Albert, P.; Salon, J.; Christie, M. Nature 1988, 336, 783. doi: 10.1038/336783a0

    2. [2]

      (2) Dearry, A.; Gingrich, J. A.; Falardeau, P.; Fremeau, R. T.; Bates, M. D.; Caron, M. G. Nature 1990, 347, 72. doi: 10.1038/347072a0

    3. [3]

      (3) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Nature 1990, 347, 146. doi: 10.1038/347146a0

    4. [4]

      (4) Van Tol, H. H.; Bunzow, J. R.; Guan, H. C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature 1991, 350, 610. doi: 10.1038/350610a0

    5. [5]

      (5) Sunahara, R. K.; Guan, H. C.; O'Dowd, B. F.; Seeman, P.; Laurier, L. G.; Ng, G.; George, S. R.; Torchia, J.; Van Tol, H. H.; Niznik, H. B. Nature 1991, 350, 614. doi: 10.1038/350614a0

    6. [6]

      (6) Kebabian, J.W.; Calne, D. B. Nature 1979, 277 (5692), 93. doi: 10.1038/277093a0

    7. [7]

      (7) Xu, M.; Koeltzo, T. E.; Santiago, G. T.; Moratalla, R.; Cooper, D. C.; Hu, X. T.; White, N. M.; Graybiel, A. M.; White, F. J.; Tonegawa, S. Neuron 1997, 19 (4), 837. doi: 10.1016/S0896-6273(00)80965-4

    8. [8]

      (8) Bontempi, B.; Sharp, F. R. J. Neurosci. 1997, 17, 8596.

    9. [9]

      (9) Plante-Bordeneuve, V.; Taussig, D.; Thomas, F.; Said, G.; Wood, N.W.; Marsden, C. D. Neurology 1997, 48, 1589. doi: 10.1212/WNL.48.6.1589

    10. [10]

      (10) Li, F.; Shu, S. Y.; Bao, X. M. Chinese Journal of Neuroscience 2003, 19 (6), 405. [李凡, 舒斯云, 包新民. 中国神经科学杂志, 2003, 19 (6), 405.]

    11. [11]

      (11) Carlsson, A.;Waters, N.;Waters, S.; Carlsson, M. L. Brain Research Reviews 2000, 31, 342. doi: 10.1016/S0165-0173(99)00050-8

    12. [12]

      (12) Suri, R. E.; Bargas, J.; Arbib, M, A. Neuroscience 2001, 103, 65. doi: 10.1016/S0306-4522(00)00554-6

    13. [13]

      (13) Salum, C.; Roque, S. A.; Pickering, A. Neurocomputing 1999, 26-27, 845. doi: 10.1016/S0925-2312(98)00129-5

    14. [14]

      (14) Xu, S. C.; Shi, G. J.; Chi, S. M. The Active Site Residues and the Molecular Channels for Dopamine within D3R Membrane Protein. The 28thCCS (Chinese Chemical Society) Congress, Sichuan University, Chengdu, China, April 13-16, 2012.

    15. [15]

      (15) Bian, F. Y.; Shi, G. J.; Chi, S. M.; Xu, S. C. The Perspective Insight into the Pathology of Parkinsonism Using the Molecular Channel Theory of Dopamine inside its Receptor Membrane Protein. Chinese Chemical Society at the Second National Conference on Bio-physical Chemistry (NCBPC2) and the International Forum on Development of Chinese Bio-physical Chemistry, Wuhan University, Wuhan, China, Oct 15-18, 2012.

    16. [16]

      (16) Zhang, J.W.; Bian, F. Y.; Shi, G. J.; Xu, S. C. Acta Phys. -Chim. Sin. 2014, 30, 183. [张继伟, 卞富永, 施国军, 徐四川. 物理化学学报, 2014, 30, 183.] doi: 10.3866/PKU.WHXB201311281

    17. [17]

      (17) Chien, E. Y. T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Science 2010, 330, 1091. doi: 10.1126/science.1197410

    18. [18]

      (18) Roth, C. B.; Hanson, M. A.; Stevens, R. C. J. Mol. Biol. 2008, 376, 1305. doi: 10.1016/j.jmb.2007.12.028

    19. [19]

      (19) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.;Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. doi: 10.1126/science.1150609

    20. [20]

      (20) DePaulis, T.; Hall, H.; Ogren, S. Eur. J. Med. Chem. Chim. Ther. 1985, 20, 273.

    21. [21]

      (21) Griffon, N.; Pilon, C.; Sautel, F.; Schwartz, J. C.; Sokoloff, P. J. Neural. Transm. 1996, 103, 1163. doi: 10.1007/BF01271201

    22. [22]

      (22) Jin, Y.;Wang, Y.; Bian, F. Y.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K.; Xu, S. C. Acta Phys. -Chim. Sin. 2011, 27, 2432. [金毅, 王悦, 卞富永, 史强, 葛茂发, 王树, 张兴康, 徐四川. 物理化学学报, 2011, 27, 2432.] doi: 10.3866/PKU.WHXB20111001

    23. [23]

      (23) Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C. Biophys. J. 2005, 88, 1818. doi: 10.1529/biophysj.104.052399

    24. [24]

      (24) Janosi, L.; Gorfe, A. A. J. Chem. Theory Comput. 2010, 6, 3267. doi: 10.1021/ct100381g

    25. [25]

      (25) Su, Z. Y.;Wang, Y. T. J. Phys. Chem. B 2011, 115, 796. doi: 10.1021/jp107599v

    26. [26]

      (26) Dunkin, C. M.; Pokorny, A.; Almeida, P. F.; Lee, H. S. J. Phys. Chem. B 2011, 115, 1188. doi: 10.1021/jp107763b

    27. [27]

      (27) Chen, R.; Poger, D.; Mark, A. E. J. Phys. Chem. B 2011, 115, 1038. doi: 10.1021/jp110002q

    28. [28]

      (28) Merlino, A.; Vitiello, G.; Grimaldi, M.; Sica, F.; Busi, E.; Basosi, R.; D'Ursi, A. M.; Fragneto, G.; Paduano, L.; D'Errico, G. J. Phys. Chem. B 2012, 116, 401. doi: 10.1021/jp204781a

    29. [29]

      (29) Yamamoto, E.; Akimoto, T.; Shimizu, H.; Hirano, Y.; Yasui, M.; Yasuoka, K. J. Phys. Chem. B 2012, 116, 8989. doi: 10.1021/jp303330c

    30. [30]

      (30) Polyansky, A. A.; Volynsky, P. E.; Nolde, D. E.; Arseniev, A. S.; Efremov, R. G. J. Phys. Chem. B 2005, 109, 15052. doi: 10.1021/jp0510185

    31. [31]

      (31) Puri, A.; Jang, H.; Yavlovich, A.; Masood, M. A.; Veenstra, T. D.; Luna, C.; Aranda-Espinoza, H.; Nussinov, R.; Blumenthal, R. Langmuir 2011, 27, 15120. doi: 10.1021/la203453x

    32. [32]

      (32) Manna, M.; Mukhopadhyay, C. Langmuir 2009, 25, 12235. doi: 10.1021/la902660q

    33. [33]

      (33) Hartshorn, M.; Jewett, C. M.; Brozik, J. A. Langmuir 2010, 26, 2609. doi: 10.1021/la904308g

    34. [34]

      (34) Mondal, S.; Mukhopadhyay, C. Langmuir 2008, 24, 10298. doi: 10.1021/la8015589

    35. [35]

      (35) Soemo, A. R.;Wirth, M. J. Langmuir 2010, 26, 2196. doi: 10.1021/la9038914

    36. [36]

      (36) Payandeh, J.; Gamal El-Din, T. M.; Scheuer, T.; Zheng, N.; Catterall, W. A. Nature 2012, 486, 135. doi: 10.1038/nature11077

    37. [37]

      (37) Jönsson, P.; Jonsson, M. P.; Höök, F. Nano Lett. 2010, 10, 1900. doi: 10.1021/nl100779k

    38. [38]

      (38) Carr, R.;Weinstock, I. A.; Sivaprasadarao, A.; Müller, A.; Aksimentiev, A. Nano Lett. 2008, 8, 3916. doi: 10.1021/nl802366k

    39. [39]

      (39) Marrink, S. J.; Lindahl, E.; Edholm, O.; Mark, A. E. J. Am. Chem. Soc. 2001, 123 (35), 8638. doi: 10.1021/ja0159618

    40. [40]

      (40) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. doi: 10.1002/jcc.540130805

    41. [41]

      (41) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revison B.01; Gaussian Inc.: Pittsburgh PA, 2003.

    42. [42]

      (42) Lang, P. T.; Moustakas, D.; Brozell, S.; Carrascal, N.; Mukherjee, S.; Pegg, S.; Kuntz, I. DOCK 6.1; University of California: San Francisco, 2006.

    43. [43]

      (43) Shi, G. J.;Wang, Y.; Jin, Y.; Chi, S. M.; Shi, Q.; Ge, M. F; Zhang, X. K.; Xu, S. C. J. Biomol. Struct. Dyn. 2012, 30 (5), 559. doi: 10.1080/07391102.2012.687522

    44. [44]

      (44) Wang, Y.; Bian, F. Y.; Deng, S. R.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K.; Xu, S. C. J. Biomol. Struct. Dyn. 2011, 28 (6), 881. doi: 10.1080/07391102.2011.10508615

    45. [45]

      (45) Xu, S. C.; Chi, S. M.; Jin, Y.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K. J. Mol. Model. 2012, 18 (1), 377. doi: 10.1007/s00894-011-1083-7

    46. [46]

      (46) Chi, S.; Xie, W.; Zhang, J.; Xu, S. C. J. Biomol. Struct. Dyn. 2015, 33 (10), 2234. doi: 10.1080/07391102.2014.999256

    47. [47]

      (47) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Computer Physics Communications 1995, 91, 43. doi: 10.1016/0010-4655(95)00042-E

    48. [48]

      (48) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701. doi: 10.1002/jcc.20291

    49. [49]

      (49) Hub, J. S.; de Groot, B. L.; Grubmüller, H.; Groenhof, G. J. Chem. Theory Comput. 2014, 10, 381. doi: 10.1021/ct400626b

    50. [50]

      (50) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5

    51. [51]

      (51) Xu, S. C.; Deng, S. R.; Ma, L. Y.; Shi, Q.; Ge, M. F.; Zhang, X. K. Acta Phys. -Chim. Sin. 2009, 25, 1290. [徐四川, 邓圣荣, 马丽英, 史强, 葛茂发, 张兴康. 物理化学学报, 2009, 25, 1290.] doi: 10.3866/PKU.WHXB20090701

    52. [52]

      (52) Daura, X.; Mark, A. E.; Van Gunsteren, W. F. J. Comput. Chem. 1998, 19 (5), 535. doi: 10.1002/(SICI)1096-987X (19980415)19:5<535::AID-JCC6>3.0.CO;2-N

    53. [53]

      (53) Van Gunsteren, W.; Billeter, S.; Eising, A.; Hunenberger, P.; Kruger, P.; Mark, A.; Tironi, I. Biomolecular Simulation: the Gromos 96 Manual and User Guide, 1st ed.; Hochschulverlag AG an der ETH Zurich: Zurich, Switzerland, 1996.

    54. [54]

      (54) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    55. [55]

      (55) Bian, F. Y.; Zhang, J.W.;Wang, D.; Xu, S. C. Acta Phys. -Chim. Sin. 2014, 30, 1947. [卞富永, 张继伟, 王丹, 徐四川. 物理化学学报, 2014, 30, 1947.] doi: 10.3866/PKU.WHXB201408271

    56. [56]

      (56) Van der Spoel, D.; Lindahl, E.; Hess, B.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Berendsen, H. J. Gromacs User Manual, version 4.5; www.gromacs.org, 2013.

    57. [57]

      (57) Hub, J. S.; de Groot, B. L.; van der Spoel, D. J. Chem. Theory Comput. 2010, 6, 3713. doi: 10.1021/ct100494z

    58. [58]

      (58) Wang, D. The Molecular Dynamics Simulations for Benzedrine to Move through the Phospholipid Bilayer Membrane. M. S. Dissertation, Yunnan University, Kunming, 2015. [王丹. 苯丙胺分子透过磷脂双层膜过程模拟研究[D]. 昆明: 云南大学, 2015.]

    59. [59]

      (59) Marrink, S. J.; Berendsen, H. J. C. J. Phys. Chem. 1994, 98, 4155. doi: 10.1021/j100066a040

    60. [60]

      (60) Marrink, S. J.; Jaehnig, F.; Berendsen, H. J. C. Biophys. J. 1996, 71, 632. doi: 10.1016/S0006-3495(96)79264-0

    61. [61]

      (61) Zahn, D.; Brickmann, J. Chem. Phys. Lett. 2002, 352, 441. doi: 10.1016/S0009-2614(01)01437-3

    62. [62]

      (62) Bemporad, D.; Essex, J.W.; Luttmann, C. J. Phys. Chem. B 2004, 108, 4875. doi: 10.1021/jp035260s

    63. [63]

      (63) Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. J. Phys. Chem. B 2004, 108, 9346. doi: 10.1021/jp035998+

    64. [64]

      (64) Nichols, J.W.; Deamer, D.W. Proc. Nat. Acad. Sci. U. S. A. 1980, 77, 2038. doi: 10.1073/pnas.77.4.2038

    65. [65]

      (65) Benga, G.; Pop, V. I.; Popescu, O.; Borza, V. J. Biochem. Biophys. Methods 1990, 21, 87. doi: 10.1016/0165-022X(90)90057-J

    66. [66]

      (66) Jansen, M.; Blume, A. Biophys. J. 1995, 68, 997. doi: 10.1016/S0006-3495(95)80275-4

    67. [67]

      (67) Andrasko, J.; Forsén, S. Biochem. Biophys. Res. Commun. 1974, 60, 813. doi: 10.1016/0006-291X(74)90313-1

    68. [68]

      (68) Graziani, Y.; Livne, A. J. Membr. Biol. 1972, 7, 275. doi: 10.1007/BF01867920

    69. [69]

      (69) Khavrutskii, I. V.; Gorfe, A. A.; Lu, B.; McCammon, J. A. J. Am. Chem. Soc. 2009, 131, 1706. doi: 10.1021/ja8081704

    70. [70]

      (70) Papahadjopoulos, D.; Nir, S.; Ohki, S. Biochim. Biophys. Acta 1972, 266, 561. doi: 10.1016/0005-2736(72)90354-9

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(1)
  • Abstract views(248)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return