Citation:
HAN Chuan-Hong, GENG Pei-Pei, GUO Yan, CHEN Xiao-Xiao, GUO Xiao-Dong, ZHANG Jun-Hong, LIU Jie, WEI Xi-Lian. Thermoresponsive Properties of a Mixed Aqueous Solution of Cationic Surfactant and Organic Acid[J]. Acta Physico-Chimica Sinica,
;2016, 32(4): 863-871.
doi:
10.3866/PKU.WHXB201601051
-
Rheological properties of aqueous mixtures of the traditional cationic surfactant cetyltrimethylammonium bromide (CTAB) and organic acid 3-methylsalicylic acid (3MS) were studied as a function of concentration and temperature using steady-state and frequency sweep-rheological measurements. Upon being heated, the solutions exhibited three different types of response. Among them, the most interesting response was that light blue dilute solutions formed over the 3MS concentration range of 80 to 100 mmol·kg-1. These samples changed from dilute pale blue solutions to transparent viscoelastic ones as their aggregation state transitioned from vesicles to long worm-like micelles with increasing temperature. Moreover, the threshold temperature of the transition increased with 3MS concentration. The results of rheological temperature scanning and conductivity measurements verified this trend. A qualitative explanation for this transformation is that bound 3MS molecules dissociate from the vesicles and join the bulk aqueous phase at high temperature.
-
Keywords:
- Surfactant,
- Micelle,
- Vesicle,
- Thermoresponsive,
- Rheological property
-
-
-
[1]
(1) Trickett, K.; Eastoe, J. Adv. Colloid Interface 2008, 144, 66. doi: 10.1016/j.cis.2008.08.009
-
[2]
(2) Chu, Z. L.; Dreiss, C. A.; Feng, Y. J. Chem. Soc. Rev. 2013, 42, 7174. doi: 10.1039/c3cs35490c
-
[3]
(3) Davies, T. S.; Ketner, A. M.; Raghavan, S. R. J. Am. Chem. Soc. 2006, 128, 6669. doi: 10.1021/ja060021e
-
[4]
(4) Lee, H. Y.; Diehn, K. K.; Sun, K. S.; Chen, T. H.; Raghavan, S. R. J. Am. Chem. Soc. 2011, 133, 8461. doi: 10.1021/ja202412z
-
[5]
(5) Zhao, L.;Wang, K.; Xu, L. M.; Liu, Y.; Zhang, S.; Li, Z. B.; Yan, Y.; Huang, J. B. Soft Matter 2012, 8, 9079. doi: 10.1039/C2SM25334H
-
[6]
(6) Zhang, Y. M.; Feng, Y. J.;Wang, J. Y.; He, S.; Guo, Z. R.; Chu, Z. L.; Dreiss, C. A. Chem. Commun. 2013, 49, 4902. doi: 10.1039/c3cc41059e
-
[7]
(7) Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, H.; Abe, M. J. Am. Chem. Soc. 2004, 126, 12282.
-
[8]
(8) Liu, C. C.; Hao, J. C. J. Phys. Chem. B. 2011, 115, 980. doi: 10.1021/jp107946n
-
[9]
(9) Jiang, L. X.;Wang, K.; Ke, F. Y.; Liang, D. H.; Huang, J. B. Soft Matter 2009, 5, 599. doi: 10.1039/B813498G
-
[10]
(10) Singh, M.; Ford, C.; Agarwal, V.; Fritz, G.; Bose, A.; John, V. T.; McPherson, G. L. Langmuir 2004, 20, 9931. doi: 10.1021/la048967u
-
[11]
(11) Zhai, L. M.; Herzog, B.; Drechsler, M.; Hoffmann, H. J. Phys. Chem. B 2006, 110, 17697. doi: 10.1021/jp0680591
-
[12]
(12) Buwalda, R. T.; Stuart, M. C. A.; Engberts, J. B. F. N. Langmuir 2000, 16, 6780. doi: 10.1021/la000164t
-
[13]
(13) Grabner, D.; Zhai, L.; Talmon, Y.; Schmidt, J.; Freiberger, N.; Glatter, O.; Herzog, B.; Hoffmann, H. J. Phys. Chem. B 2008, 112, 2901. doi: 10.1021/jp0749423
-
[14]
(14) Horbaschek, K.; Hoffmann, H.; Thunig, C. J. Colloid Interface Sci. 1998, 206, 439. doi: 10.1006/jcis.1998.5690
-
[15]
(15) Ghosh, R.; Dey, J. Langmuir 2014, 30, 13516. doi: 10.1021/la5022214
-
[16]
(16) Cates, M. E.; Candau, S. J. J. Phys. Condens. Matter 1990, 2, 6869. doi: 10.1088/0953-8984/2/33/001
-
[17]
(17) Magid, L. J. J. Phys. Chem. B 1998, 102, 4064. doi: 10.1021/ jp9730961
-
[18]
(18) Olsson, U.; Soderman, O.; Guering, P. J. Phys. Chem. 1986, 90, 5223. doi: 10.1021/j100412a066
-
[19]
(19) Rao, U. R. K.; Manohar, C.; Valaulikar, B. S.; Iyer, R. M. J. Phys. Chem. 1987, 91, 3286. doi: 10.1021/j100296a036
-
[20]
(20) Lin, Z.; Cai, J. J.; Scriven, L. E.; Davis, H. T. J. Phys. Chem. 1994, 98, 5984. doi: 10.1021/j100074a027
-
[21]
(21) Zheng, Y.; Lin, Z.; Zakin, J. L.; Talmon, Y.; Davis, H. T.; Scriven, L. E. J. Phys. Chem. B 2000, 104, 5263. doi: 10.1021/jp0002998
-
[22]
(22) Acharya, D. P.; Kunieda, H. J. Phys. Chem. B 2003, 107, 10168. doi: 10.1021/jp0353237
-
[23]
(23) Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci. 2007, 311, 276. doi: 10.1016/j.jcis.2007.02.050
-
[24]
(24) Wei, X. L.; Ping, A. L.; Du, P. P.; Liu, J.; Sun, D. Z.; Zhang, Q. F.; Hao, H. G.; Yu, H. J. Soft Matter 2013, 9, 8454. doi: 10.1039/c3sm51017d
-
[25]
(25) Thurn, H.; Lobl, M.; Hoffmann, H. J. Phys. Chem. 1985, 89, 517. doi: 10.1021/j100249a030
-
[26]
(26) Lin, Y. Y.; Qiao, Y.; Tang, P. F.; Li, Z. B.; Huang, J. B. Soft Matter 2011, 7, 2762. doi: 10.1039/c0sm01050b
-
[27]
(27) Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1989, 5, 398. doi: 10.1021/la00086a020
-
[28]
(28) Hoffmann, H. Structure and Flow in Surfactant Solutions; Herb, C. A., Prud' homme., R. K. Eds.; American Chemical Society:Washington, DC, 1994; pp 2-31.
-
[29]
(29) Lin, Z. Langmuir 1996, 12, 1729. doi: 10.1021/la950570q
-
[30]
(30) Regev, O.; Guillemet, F. Langmuir 1999, 15, 4357. doi: 10.1021/la980935h
-
[31]
(31) Li, X.; Dong, S. L.; Hao, J. C. Soft Matter 2009, 5, 990. doi: 10.1039/b815640a
-
[32]
(32) Jiang, L. X.; Deng, M. L.;Wang, Y. L.; Liang, D. H.; Yan, Y.; Huang, J. B. J. Phys. Chem. B 2009, 113, 7498.
-
[33]
(33) Nagarajan, R. Langmuir 2002, 18, 31. doi: 10.1021/la010831y
-
[34]
(34) Raghavan, S. R.; Kaler, E.W. Langmuir 2001, 17, 300. doi: 10.1021/la0007933
-
[35]
(35) Makhloufi, R.; Cressely, R. Colloid Polym. Sci. 1992, 270, 1035. doi: 10.1007/BF00655973
-
[36]
(36) Ponton, A.; Schott, C.; Quemada, D. Colloids Surf. A 1998, 145, 37. doi: 10.1016/S0927-7757(98)00681-5
-
[37]
(37) Kalur, G. C.; Frounfelker, B. D.; Cipriano, B. H.; Norman, A. I.; Raghavan, S. R. Langmuir 2005, 21, 10998. doi: 10.1021/la052069w
-
[38]
(38) Hassan, P. A.; Valaulikar, B. S.; Manohar, C.; Kern, F.; Bourdieu, L.; Candau, S. J. Langmuir 1996, 12, 4350. doi: 10.1021/la960269p
-
[39]
(39) Menon, S. V. G.; Manohar, C.; Lequeux, F. Chem. Phys. Lett. 1996, 263, 727. doi: 10.1016/S0009-2614(96)01279-1
-
[40]
(40) Narayanan, J.; Mendes, E.; Manohar, C. Int. J. Mod. Phys. B 2002, 16, 375. doi: 10.1142/S0217979202009895
-
[1]
-
-
-
[1]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[2]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[3]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[4]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[5]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[6]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[7]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[8]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[9]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[10]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[11]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[12]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[13]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[14]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[15]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[16]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[17]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[20]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(341)
- HTML views(20)